Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover directional and long-lived nanolight in a 2D material

25.10.2018

An international team led by researchers from Monash University (Melbourne, Australia), University of Oviedo (Asturias, Spain), CIC nanoGUNE (San Sebastián, Spain), and Soochow University (Suzhou, China) discover squeezed light ('nanolight') in the nanoscale that propagates only in specific directions along thin slabs of molybdenum trioxide - a natural anisotropic 2D material -. Besides its unique directional character, this nanolight lives for an exceptionally long time, and thus could find applications in signal processing, sensing or heat management at the nanoscale.

Future information and communication technologies will rely on the manipulation of not only electrons but also of light at the nanometer-scale. Squeezing (confining) light to such a small size has been a major goal in nanophotonics for many years. A successful strategy is the use of polaritons, which are electromagnetic waves resulting from the coupling of light and matter.


Illustration of directional nanolight propagating along a thin layer of molybdenum trioxide.

Copyright: Shaojuan Li

Particularly strong light squeezing can be achieved with polaritons at infrared frequencies in 2D materials, such as graphene and hexagonal boron nitride. However, although extraordinary polaritonic properties - such as electrical tuning of graphene polaritons - have been recently achieved with these materials, the polaritons have always been found to propagate along all directions of the material surface, thereby losing energy quite fast, which limits their application potential.

Recently, it was predicted that polaritons can propagate "anisotropically" along the surface of 2D materials, in which the electronic or structural properties are different along different directions. In this case, the velocity and wavelength of the polaritons strongly depend on the direction in which they propagate. This property can lead to highly directional polariton propagation in the form of nanoscale confined rays, which could find future applications in the fields of sensing, heat management or maybe even quantum computing.

Now, an international team led by Qiaoliang Bao (Monash Engineering's Associate Professor, Melbourne, Australia), Pablo Alonso-González (Distinguished researcher at University of Oviedo, Spain) and Rainer Hillenbrand (Ikerbasque Research Professor at CIC nanoGUNE, San Sebastián, Spain) have discovered ultra-confined infrared polaritons that propagate only in specific directions along thin slabs of the natural 2D material molybdenum trioxide (α-MoO3).

"Our findings promise α-MoO3 to become a unique platform for infrared nanophotonics", says Qiaoliang Bao. "It was amazing to discover polaritons on our α-MoO3 thin flakes travelling only along certain directions", says Weiliang Ma, postgraduate-student and co-first-author. "Until now, the directional propagation of polaritons has been observed experimentally only in artificially structured materials, where the ultimate polariton confinement is much more difficult to achieve than in natural materials", adds co-first author Shaojuan Li.

Apart of directional propagation, the study also revealed that the polaritons on α-MoO3 can have an extraordinarily long lifetime. "Light seems to take a nanoscale highway on α-MoO3; it travels along certain directions with almost no obstacles", says Pablo Alonso-González, co-first author of the paper. He adds: "Our measurements show that polaritons on α-MoO3 live up to 20 picoseconds, which is 40 times larger than the best-possible polariton lifetime in high-quality graphene at room temperature".

Because the wavelength of the polaritons is much smaller than that of light, the researchers had to use a special microscope, a so-called near-field optical microscope, to image them. "The establishment of this technique coincided perfectly with the emergence of novel van der Waals materials, enabling the imaging of a variety of unique and even unexpected polaritons during the past years", adds Rainer Hillenbrand.

For a better understanding of the experimental results, the researchers developed a theory that allowed them to extract the relation between the momentum of polaritons in α-MoO3 with their energy. "We have realized that light squeezed in α-MoO3 can become "hyperbolic" making the energy and wave-fronts to propagate in different directions along the surface, which can lead to interesting exotic effects in optics (such as e.g. negative refraction or "superlensing")", says Alexey Nikitin, Ikerbasque Research Associate at Donostia International Physics Center (DIPC), who developed the theory in collaboration with Javier Taboada-Gutiérrez, and Javier Martín-Sánchez, PhD and postdoctoral researchers, respectively at Alonso-Gonzalez´s group.

The current work is just the beginning of a series of studies focused on directional control and manipulation of light with the help of ultra-low-loss polaritons at the nanoscale, which could benefit the development of more efficient nanophotonic devices for optical sensing and signal processing or heat management.

###

Published manuscript:

In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal Weiliang Ma, Pablo Alonso-González, Shaojuan Li, Alexey Y. Nikitin, Jian Yuan, Javier Martín-Sánchez, Javier Taboada-Gutiérrez, Iban Amenabar, Peining Li, Saül Vélez, Christopher Tollan, Zhigao Dai, Yupeng Zhang, Sharath Sriram, Kourosh Kalantar-Zadeh, Shuit-Tong Lee, Rainer Hillenbrand & Qiaoliang Bao, Nature, DOI: 10.1038/s41586-018-0618-9

Collaborative team/participating parts/involved institutions:

Monash University (Australia); https://www.monash.edu/engineering/qiaoliangbao
University of Oviedo Spain; http://www.uniovi.es
CIC nanoGUNE (Spain); https://www.nanogune.eu/nanooptics
Soochow University (China); http://funsom.suda.edu.cn/funsomen/3015/list.htm
Donostia International Physics Center (DIPC, Spain); http://www.dipc.ehu.es

Acknowledgements

  • Australia: FLEET funding under the Australian Research Council Centres of Excellence program. The research was performed in part at the Melbourne Centre for Nanofabrication (MCN), an Australian National Fabrication Facility (ANFF).
  • China: National Natural Science Foundation of China, Youth 973 program, National Key Research Development Program, Natural Science Foundation of Jiangsu Province, Priority Academic Program Development of Jiangsu, Higher Education Institutions (PAPD) and Collaborative Innovation Center of Suzhou Nano Science and Technology
  • Spain: Ministry of Economy, Industry and Competitiveness, Clarín Programme from the Government of the Principality of Asturias, Maria de Maeztu Units of Excellence Programme.
  • Europe: European Research Council under the Starting grant 715496, "2DNANOPTICA".

ABOUT MONASH UNIVERSITY:

Monash University is a public research university based in Melbourne, Australia. Monash University is one of Australia's leading universities and ranks among the world's top 100. Monash is a member of Australia's Group of Eight, a coalition of Australia's eight leading research Universities, a member of the ASAIHL, and is the only Australian member of the M8 Alliance of Academic Health Centers, Universities and National Academies. http://www.monash.edu

ABOUT UNIVERSITY OF OVIEDO:

The University of Oviedo, located in Oviedo, Asturias, has a teaching and research staff of more than 2000 people in 38 departments, among them are 350 young researchers with expertise ranging from physics, chemistry, life sciences, biology etc., at both a post-graduate and post-doctoral level. http://www.uniovi.es

ABOUT CIC NANOGUNE:

The CIC nanoGUNE Co-operative Research Centre, located in Donostia-San Sebastian, Basque Country, is a research center set up with the mission to perform world-class nanoscience research for the competitive growth of the Basque Country. NanoGUNE is also recognized by the Spanish Research Agency as a "María de Maeztu" Unit of Excellence (2017-2021). http://www.nanogune.eu

ABOUT SOOCHOW UNIVERSITY Soochow University, a Jiangsu provincial key comprehensive university located in Suzhou, Jiangsu, China. The university is part of the national "211 Project" and is a "2011 Plan" university, also one of the top 5% research universities (overall ranking 28 within 704 Chinese universities in 2017) in China. http://www.suda.edu.cn

ABOUT DIPC

The Donostia International Physics Center Foundation (DIPC) (created in 1999) promotes and catalyses the development of basic research in Physics. It presents an international point of reference in the field of the Physics of Materials. http://www.dipc.ehu.es

Media Contact

Irati Kortabitarte
i.kortabitarte@elhuyar.eus

Irati Kortabitarte | EurekAlert!
Further information:
https://www.nature.com/articles/s41586-018-0618-9?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+nature%2Frss%2Fcurrent+%28Nature+-+Issue%29
http://dx.doi.org/10.1038/s41586-018-0618-9

More articles from Materials Sciences:

nachricht Heat energy leaps through empty space, thanks to quantum weirdness
12.12.2019 | University of California - Berkeley

nachricht How light a foldable and long-lasting battery can be?
12.12.2019 | Pohang University of Science & Technology (POSTECH)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Weizmann physicists image electrons flowing like water

12.12.2019 | Physics and Astronomy

Revealing the physics of the Sun with Parker Solar Probe

12.12.2019 | Physics and Astronomy

New technique to determine protein structures may solve biomedical puzzles

12.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>