Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers devise microreactor to study formation of methane hydrate

23.08.2017

NYU Tandon team is first to be able to measure how by how much transport phenomena affect crystal propagation rates

Researchers at the NYU Tandon School of Engineering are using a novel means of studying how methane and water form methane hydrate that allows them to examine discrete steps in the process faster and more efficiently.


A thermoelectrically-cooled microreactor developed in the lab of NYU Tandon Professor Ryan Hartman provides insights into the crysallization of methane and water to form methane hydrate. The device comprises microchannels etched in silicon then bonded to a substrate to create 3-D microstructures. A thermoelectric cooling system enables stepwise temperature changes and isothermal operation. Stainless steel compression chucks enabled the delivery of fluids to and from the devices.

Credit: Ryan Hartman

NYU Tandon researchers led by Ryan Hartman, an assistant professor of biomolecular and chemical engineering who runs Tandon's Flow Chemistry with Microsystems Laboratory, are using microfluidics -- the precise control and manipulation of fluids by constraining them to sub-millimeter geometries -- along with small changes in temperature to explore the indeterminate process by which methane gas becomes a solid hydrate when exposed to water.

The work has implications for engineering and climate science. An enormous amount of methane is trapped in permafrost and beneath the ocean's artic bed, much of it in an ice-locked methane hydrate state, in which methane is enclosed in cages of water molecules. Understanding how methane -- which absorbs 30 times as much solar radiation as carbon dioxide -- interacts with water to become a crystalline gas hydrate and, conversely, how it dissociates back to its gaseous state, is critical to an understanding of how it could catalyze, or perhaps slow, climate change. It could also lead to new technologies for gas separations, and efficient and safe storage of natural gas as the amount of energy in natural gas hydrate deposits is at least twice that of all other fossil fuels combined.

In research exploring how the transfer of heat and mass affect the formation of hydrates, published in Lab on a Chip, a journal of the Royal Society of Chemistry, the team established a novel method for studying the growth of methane hydrate films: a thermoelectrically cooled microchannel reactor designed by Hartman's laboratory. Uniquely, the technology allows for "stepwise" changes in temperature, vastly reducing experimental time from hours or days, to minutes or even seconds, while enabling a much more precise examination of the process through in situ spectroscopic techniques. Thanks to this technology Hartman's team is also the first to be able to measure the degree to which mass transfer, which includes such phenomena as diffusion, affects crystal propagation rates.

Researchers generally agree that gas hydrate formation begins with nucleation, wherein water molecules begin to form a latticework that entraps "guest" molecules of a gas like methane. Crystallization, in which the process rapidly expands outward from these seeds of crystal formation to larger structures -- such as sheets at the interface of water and gas -- follows. The kinetics of nucleation and other discrete steps on the way to hydrate formation are poorly understood partly because of the limitations of traditional batch reactors (essentially high-pressure tanks with agitators and heating or cooling equipment), in which water is "blanketed" with super-cooled methane gas. Such systems require that the phase boundary temperature for hydrate formation, where the boundary is the interface between methane gas and super-cooled water, be lowered by as much as 10 degrees Kelvin. Even so, nucleation can take hours or days in such systems.

Using the new technology, Hartman's doctoral student Weiqi Chen and postdoctoral associate Bruno Pinho were able to incrementally sub-cool water molecules an order of magnitude less than required in larger-scale batch systems, achieving nucleation at only one-degree Kelvin increments, over a much shorter time frame.

In Hartman's isothermal system, temperature cycling -- wherein experimental temperatures alternate between two extremes -- with cooling rates on the order of seconds, allowed the researchers to form and use the nuclei quickly enough to conduct large numbers of tests in a much shorter time than traditional methods.

"Nucleation is difficult to predict," said Hartman. "It can take minutes or sometimes days in the formation of gas hydrates. But because we are able to cycle the temperature within seconds we can form seed crystals and use the nuclei we form to reproducibly form larger crystals."

Hartman's technology allowed the team to demonstrate that the propagation rate of crystals is dependent on a combination of heat transfer (through convection or fluid motion, for instance), mass transfer, and intrinsic crystallization (the rate at which hydrate crystals form when unimpeded by heat or mass transfer).

"Imagine commuting from home to work using the same route every day," Hartman explained. "You cross three bridges, and depending on the day, one, two, or all three are congested. By how much each bridge slows you down, relatively speaking compared to the others, determines the overall time of your commute. In the context of hydrate crystallization, traffic congestion on the first bridge is heat transfer resistance, the second bridge is mass transfer resistance, and intrinsic crystallization the third. The rate at which hydrate crystals form can depend on all three. What we have done is to discover a way to measure it."

###

This work was supported primarily by the Materials Research Science and Engineering Center (MRSER) program of the National Science Foundation.

"Flash crystallization kinetics of methane (sI) hydrate in a thermoelectrically-cooled microreactor" is available at http://pubs.rsc.org/en/content/articlepdf/2014/LC/C7LC00645D?page=search

About the New York University Tandon School of Engineering

The NYU Tandon School of Engineering dates to 1854, the founding date for both the New York University School of Civil Engineering and Architecture and the Brooklyn Collegiate and Polytechnic Institute (widely known as Brooklyn Poly). A January 2014 merger created a comprehensive school of education and research in engineering and applied sciences, rooted in a tradition of invention and entrepreneurship and dedicated to furthering technology in service to society. In addition to its main location in Brooklyn, NYU Tandon collaborates with other schools within NYU, the country's largest private research university, and is closely connected to engineering programs at NYU Abu Dhabi and NYU Shanghai. It operates Future Labs focused on start-up businesses in downtown Manhattan and Brooklyn and an award-winning online graduate program. For more information, visit http://engineering.nyu.edu.

Karl Greenberg | EurekAlert!

More articles from Materials Sciences:

nachricht Looking at linkers helps to join the dots
10.07.2020 | King Abdullah University of Science & Technology (KAUST)

nachricht Goodbye Absorbers: High-Precision Laser Welding of Plastics
10.07.2020 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>