Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop method to grow artificial tissues with embedded nanoscale sensors

27.08.2012
'Cyborg' tissues could merge bioengineering with electronics for drug development, implantable therapeutics

A multi-institutional research team has developed a method for embedding networks of biocompatible nanoscale wires within engineered tissues. These networks—which mark the first time that electronics and tissue have been truly merged in 3D—allow direct tissue sensing and potentially stimulation, a potential boon for development of engineered tissues that incorporate capabilities for monitoring and stimulation, and of devices for screening new drugs.

The researcher team—led by Daniel Kohane, MD, PhD, in the Department of Anesthesia at Boston Children's Hospital; Charles M. Lieber, PhD, at Harvard University; and Robert Langer, ScD, at the Massachusetts Institute of Technology—reported their work online on August 26 in Nature Materials.

One of the major challenges in developing bioengineered tissues is creating systems to sense what is going on (e.g., chemically, electrically) within a tissue after it has been grown and/or implanted. Similarly, researchers have struggled to develop methods to directly stimulate engineered tissues and measure cellular reactions.

"In the body, the autonomic nervous system keeps track of pH, chemistry, oxygen and other factors, and triggers responses as needed," Kohane explained. "We need to be able to mimic the kind of intrinsic feedback loops the body has evolved in order to maintain fine control at the cellular and tissue level."

With the autonomic nervous system as inspiration, a postdoctoral fellow in the Kohane lab, Bozhi Tian, PhD, and his collaborators built mesh-like networks of nanoscale silicon wires—about 80 nm in diameter—shaped like flat planes or in a "cotton-candy"-like reticular conformation. The networks were porous enough to allow the team to seed them with cells and encourage those cells to grow in 3D cultures.

"Previous efforts to create bioengineered sensing networks have focused on 2D layouts, where culture cells grow on top of electronic components, or on conformal layouts where probes are placed on tissue surfaces," said Tian. "It is desirable to have an accurate picture of cellular behavior within the 3D structure of a tissue, and it is also important to have nanoscale probes to avoid disruption of either cellular or tissue architecture."

"The current methods we have for monitoring or interacting with living systems are limited," said Lieber. "We can use electrodes to measure activity in cells or tissue, but that damages them. With this technology, for the first time, we can work at the same scale as the unit of biological system without interrupting it. Ultimately, this is about merging tissue with electronics in a way that it becomes difficult to determine where the tissue ends and the electronics begin."

"Thus far, this is the closest we've come to incorporating into engineered tissues electronic components near the size of structures of the extracellular matrix that surrounds cells within tissues," Kohane added.

Using heart and nerve cells as their source material and a selection of biocompatible coatings, the team successfully engineered tissues containing embedded nanoscale networks without affecting the cells' viability or activity. Via the networks, the researchers could detect electrical signals generated by cells deep within the engineered tissues, as well as measure changes in those signals in response to cardio- or neurostimulating drugs.

Lastly, the team demonstrated that they could construct bioengineered blood vessels with embedded networks and use those networks to measure pH changes within and outside the vessels—as would be seen in response to inflammation, ischemia and other biochemical or cellular environments.

"This technology could turn some basic principles of bioengineering on their head," Kohane said. "Most of the time, for instance, your goal is to create scaffolds on which to grow tissues and then have those scaffolds degrade and dissolve away. Here, the scaffold stays, and actually plays an active role."

The team members see multiple future applications for this technology, from hybrid bioengineered "cyborg" tissues that sense changes within the body and trigger responses (e.g., drug release, electrical stimulation) from other implanted therapeutic or diagnostic devices, to development of "lab-on-a-chip" systems that would use engineered tissues for screening of drug libraries.

The study was supported by the National Institutes of Health (NIH Director's Pioneer Award, grant numbers DE0113023, DE016516, GM073626), the McKnight Foundation and Boston Children's Hospital.

Boston Children's Hospital is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including nine members of the National Academy of Sciences, 11 members of the Institute of Medicine and nine members of the Howard Hughes Medical Institute comprise Boston Children's research community. Founded as a 20-bed hospital for children, Boston Children's today is a 395 bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Boston Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about research and clinical innovation at Boston Children's, visit: http://vectorblog.org/.

Keri Stedman | EurekAlert!
Further information:
http://www.harvard.edu
http://www.childrenshospital.org

More articles from Materials Sciences:

nachricht Barely scratching the surface: A new way to make robust membranes
13.12.2018 | DOE/Argonne National Laboratory

nachricht Topological material switched off and on for the first time
11.12.2018 | ARC Centre of Excellence in Future Low-Energy Electronics Technologies

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Formed to Meet Customers’ Needs – New Laser Beams for Glass Processing

17.12.2018 | Physics and Astronomy

Preserving soil quality in the long term

17.12.2018 | Architecture and Construction

New RNA sequencing strategy provides insight into microbiomes

17.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>