Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Design Nanometer-Scale Material That Can Speed Up, Squeeze Light

02.05.2013
In a process one researcher compares to squeezing an elephant through a pinhole, researchers at Missouri University of Science and Technology have designed a way to engineer atoms capable of funneling light through ultra-small channels.

Their research is the latest in a series of recent findings related to how light and matter interact at the atomic scale, and it is the first to demonstrate that the material – a specially designed “meta-atom” of gold and silicon oxide – can transmit light through a wide bandwidth and at a speed approaching infinity. The meta-atoms’ broadband capability could lead to advances in optical devices, which currently rely on a single frequency to transmit light, the researchers say.

“These meta-atoms can be integrated as building blocks for unconventional optical components with exotic electromagnetic properties over a wide frequency range,” write Dr. Jie Gao and Dr. Xiaodong Yang, assistant professors of mechanical engineering at Missouri S&T, and Dr. Lei Sun, a visiting scholar at the university. The researchers describe their atomic-scale design in the latest issue of the journal Physical Review B (“Broadband epsilon-near-zero metamaterials with steplike metal-dielectric multilayer structures,” Phys. Rev. B 87, 165134 2013).

The researchers created mathematical models of the meta-atom, a material 100 nanometers wide and 25 nanometers tall that combined gold and silicon oxide in stairstep fashion. A nanometer is one billionth of a meter and visible only with the aid of a high-power electron microscope.

In their simulations, the researchers stacked 10 of the meta-atoms, then shot light through them at various frequencies. They found that when light encountered the material in a range between 540 terahertz and 590 terahertz, it “stretched” into a nearly straight line and achieved an “effective permittivity” known as epsilon-near-zero.

Effective permittivity refers to the ratio of light’s speed through air to its speed as it passes through a material. When light travels through glass, for instance, its effective permittivity is 2.25. Through air or the vacuum of outer space, the ratio is one. That ratio is what is typically referred to as the speed of light.

As light passes through the engineered meta-atoms described by Gao and Yang, however, its effective permittivity reaches a near-zero ratio. In other words, through the medium of these specially designed materials, light actually travels faster than the speed of light. It travels “infinitely fast” through this medium, Yang says.

The meta-atoms also stretch the light. Other materials, such as glass, typically compress optical waves, causing diffraction.

This stretching phenomenon means that “waves of light could tunnel through very small holes,” Yang says. “It is like squeezing an elephant through an ultra-small channel.”

The wavelength of light encountering a single meta-atom is 500 nanometers from peak to peak, or five times the length of Gao and Yang’s specially designed meta-atoms, which are 100 nanometers in length. While the Missouri S&T team has yet to fabricate actual meta-atoms, they say their research shows that the materials could be built and used for optical communications, image processing, energy redirecting and other emerging fields, such as adaptive optics.

Last year, Albert Polman at the FOM Institute for Atomic and Molecular Physics in Amsterdam and Nader Engheta, an electrical engineer at the University of Pennsylvania, developed a tiny waveguide device in which light waves of a single wavelength also achieved epsilon-near-zero. But the Missouri S&T researchers’ work is the first to demonstrate epsilon-near-zero in a broadband of 50 terahertz.

“The design is practical and realistic, with the potential to fabricate actual meta-atoms,” says Gao. Adds Yang: “With this research, we filled the gap from the theoretical to the practical.”

Through a process known as electron-beam deposition, the researchers have built a thin-film wafer from 13 stacked meta-atoms. But those materials were uniform in composition rather than arranged in the stairstep fashion of their modeled meta-atoms.

Andrew Careaga | EurekAlert!
Further information:
http://www.mst.edu

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>