Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Demonstrate ‘No-Ink’ Color Printing with Nanomaterials

08.06.2015

Researchers at Missouri University of Science and Technology are giving new meaning to the term “read the fine print” with their demonstration of a color printing process using nanomaterials.

In this case, the print features are very fine – visible only with the aid of a high-powered electron microscope.


Missouri S&T

Missouri S&T researchers have developed a method to accurately print high-resolution images on nanoscale materials. They used the Missouri S&T athletic logo to demonstrate the process. At top left is the original logo. At right are examples of the logo printed at the nanoscale level.

The researchers describe their “no-ink” printing method in the June 5 issue of the Nature Publishing Group journal Scientific Reports and illustrate their technique by reproducing the Missouri S&T athletic logo on a nanometer-scale surface. A nanometer is one billionth of a meter, and some nanomaterials are only a few atoms in size.

The method described in the Scientific Reports article “Structural color printing based on plasmonic metasurfaces of perfect light absorption” involves the use of thin sandwiches of nanometer-scale metal-dielectric materials known as metamaterials that interact with light in ways not seen in nature.

Experimenting with the interplay of white light on sandwich-like structures, or plasmonic interfaces, the researchers developed what they call “a simple but efficient structural color printing platform” at the nanometer-scale level. They believe the process holds promise for future applications, including nanoscale visual arts, security marking and information storage.

The researchers’ printing surface consists of a sandwich-like structure made up of two thin films of silver separated by a “spacer” film of silica. The top layer of silver film is 25 nanometers thick and is punctured with tiny holes created by a microfabrication process known as focused ion beam milling. The bottom layer of silver is four times thicker than the top layer but still minuscule at 100 nanometers. Between the top and bottom films lies a 45-nanometer silica dielectric spacer.

The researchers created a scaled-down template of the athletic logo and drilled out tiny perforations on the top layer of the metamaterial structure. Under a scanning electron microscope, the template looks like a needlepoint pattern of the logo. The researchers then beamed light through the holes to create the logo using no ink – only the interaction of the materials and light.

By adjusting the hole size of the top layer, light at the desired frequency was beamed into the material with a perfect absorption. This allowed researchers to create different colors in the reflected light and thereby accurately reproduce the S&T athletic logo with nanoscale color palettes. The researchers further adjusted the holes to alter the logo’s official green and gold color scheme to introduce four new colors (an orange ampersand, magenta “S” and “T,” cyan pickaxe symbol and navy blue “Missouri”).

“To reproduce a colorful artwork with our nanoscale color palettes, we replaced different areas in the original image with different nanostructures with specified hole sizes to represent various visible colors,” says Dr. Xiaodong Yang, an assistant professor at Missouri S&T, who leads the Nanoscale Optics Laboratory in the university’s mechanical and aerospace engineering department. “We chose the athletic logo to fill that need.”

“Unlike the printing process of an inkjet or laserjet printer, where mixed color pigments are used, there is no color ink used in our structural printing process – only different hole sizes on a thin metallic layer,” says Dr. Jie Gao, an assistant professor of mechanical and aerospace engineering at Missouri S&T and a co-author of the paper.

In their paper, the authors note that the process resulted in “pure colors with high brightness” with little need for protective coatings. The researchers believe the process could lead to “high-performance, pigment-free color printing and relevant applications such as security marking and information storage.”

Other co-authors of the Scientific Reports paper are Dr. Fei Cheng, a researcher at Missouri S&T’s Nanoscale Optics Laboratory, and Dr. Ting S. Luk of the Center for Integrated Nanotechnologies at Sandia National Laboratories in Albuquerque, New Mexico.

Contact Information
Andrew Careaga
Communications Director
acareaga@mst.edu
Phone: 573-341-4328
Mobile: 573-578-4420

Andrew Careaga | newswise

More articles from Materials Sciences:

nachricht Smart textiles made possible by flexible transmission lines
02.06.2020 | Ecole Polytechnique Fédérale de Lausanne

nachricht A remote control for neurons
02.06.2020 | College of Engineering, Carnegie Mellon University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

FISBA AG opens sales office in Shanghai, China

03.06.2020 | Press release

Perfect optics through light scattering

02.06.2020 | Power and Electrical Engineering

The digital construction site: A smarter way of building with mobile robots

02.06.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>