Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create new programmed shape-morphing scaffolds enabling facile 3-D endothelialization

01.06.2018

Recently, a research team led by Dr. DU Xuemin at the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences created a new shape-morphing scaffold, enabling programmed deformation from a 2D planar cell-laden structure to a well-defined 3D tubular shape, which facilitated the facile 3D endothelialization of small-diameter vascular grafts.

The paper entitled "Programmed Shape-Morphing Scaffolds Enabling Facile 3D Endothelialization" was published in Advanced Functional Materials.


This image shows physical characteristics of shape-morphing scaffolds, and the shape-morphing scaffolds with seeded human umbilical vein endothelial cells (HUVECs).

Credit: DU Xuemin

Cardiovascular disease is now the No. 1 cause of death globally according to the World Health Organization, and more than 17.5 million patients die from it every year.

Coronary artery bypass grafting (CABG) is one of most effective approaches for treating severe cardiovascular disease. However, patients undergoing CABG still face the high risks of transplantation surgery and potential complications caused by compliance mismatch.

In recent years, tissue engineering has emerged, holding the promise of constructing functional vascular analogs for treating cardiovascular disease. Nevertheless, 3D endothelialization remains a great challenge for tissue-engineered vascular grafts (TEVGs), particularly small-diameter ones (diameter < 5 mm) suited for CABG, and is the primary problem of TEVGs upon implantation.

To address the problem of 3D endothelialization of TEVGs, the researchers designed and developed a novel scaffold, consisting of two layers that combined a shape memory polymer and an electrospun membrane.

By employing the unique shape memory property of the polymer, the scaffold could deform from a 2D planar shape to a well-defined 3D tubular shape at the physiological temperature (37 °C).

The endothelial cells seeded firmly and homogeneously on the electrospun membrane of the planar bilayer scaffold could therefore be conveniently converted to a vascular-like structure of predetermined tubular shape, and a desirable 3D spatial organization of endothelial cells onto the lumen of the scaffold was achieved.

The study found that the 3D cultured endothelial cells on the novel shape-morphing scaffold could form biomimetic cell-scaffold and cell-cell interactions, effectively promoting the formation of a confluent endothelial monolayer and the 3D endothelialization of TEVGs.

This research not only offers a new method for creating TEVGs that enables facile 3D endothelialization, but also offers a potential in vitro endothelium model for the screening of cardiovascular drugs.

"We hope that the universal strategy developed in this study by combining smart materials and conventional tissue engineering scaffolds can be extended to engineering complex cell-scaffold constructs mimicking the complicated anatomy of various tissues and organs through on-demand programmed deformation," said Dr. DU Xuemin.

Media Contact

ZHANG Xiaomin
xm.zhang@siat.ac.cn
86-755-865-85299

http://english.cas.cn/ 

ZHANG Xiaomin | EurekAlert!
Further information:
http://dx.doi.org/10.1002/adfm.201801027

More articles from Materials Sciences:

nachricht Pressure tuned magnetism paves the way for novel electronic devices
18.12.2018 | Bar-Ilan University

nachricht Researchers observe charge-stripe crystal phase in an insulating cuprate
18.12.2018 | Boston College

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>