Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Achieve Higher Solar-Cell Efficiency With Zinc-Oxide Coating

23.04.2014

Surface modification allows cell to absorb more light

Engineering researchers at the University of Arkansas have achieved the highest efficiency ever in a 9 millimeter-squared solar cell made of gallium arsenide. After coating the cufflink-sized cells with a thin layer of zinc oxide, the research team reached a conversion efficiency of 14 percent.


University of Arkansas

Yahia Makableh demonstrates how a small array of 9-millimeter, gallium-arsenide solar cells can provide energy for small devices.

A small array of these cells – as few as nine to 12 – generate enough energy for small light-emitting diodes and other devices. But surface modification can be scaled up, and the cells can be packaged in large arrays of panels to power large devices such as homes, satellites, or even spacecraft.

The research team, led by Omar Manasreh, professor of electrical engineering, published its findings in Applied Physics Letters and the April 2014 issue of Solar Energy Materials and Solar Cells.

An alternative to silicon, gallium arsenide is a semiconductor used to manufacture integrated circuits, light-emitting diodes and solar cells. The surface modification, achieved through a chemical synthesis of thin films, nanostructures and nanoparticles, suppressed the sun’s reflection so the cell could absorb more light. But even without the surface coating, the researchers were able to achieve 9-percent efficiency by manipulating the host material.

“We want to increase the efficiency of small cells,” said Yahia Makableh, doctoral student in electrical engineering. “With this specific material, the theoretical maximum is 33 percent efficiency, so we have some work to do. But we’re making progress. The beauty of zinc oxide is that it’s cheap, non-toxic and easy to synthesize.”

Makableh said the surface modification could also be applied to other solar cells, including those made of indium-arsenide and gallium-arsenide quantum dots. Solar cells made of these materials may be able to achieve 63-percent conversion efficiency, which would make them ideal for future development of solar cells.

Makableh used equipment and instrumentation in the College of Engineering’s Optoelectronics Research Lab, which is directed by Manasreh. Researchers in the lab grow and functionalize semiconductors, nanostructured anti-reflection coatings, self-cleaning surfaces and metallic nanoparticles to be used in solar cells. Their ultimate goal is to fabricate and test photovoltaic devices with greater solar-energy conversion efficiency.

Manasreh focuses on experimental and theoretical optoelectronic properties of semiconductors, superlattices, nanostructures and related devices. Since joining the University of Arkansas in 2003, he has received more than $8 million in public research funding from the National Aeronautics and Space Administration, the U.S. Air Force and the National Science Foundation. 

CONTACTS:
Yahia Makableh, doctoral student, electrical engineering
College of Engineering
479-966-6728, ymakable@email.uark.edu

Omar Manasreh, professor, electrical engineering
College of Engineering
479-575-6053, manasreh@uark.edu

Matt McGowan | newswise
Further information:
http://www.uark.edu

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>