Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT creates new oil-repelling material

06.12.2007
Many applications in aviation, more

MIT engineers have designed the first simple process for manufacturing materials that strongly repel oils. The material, which can be applied as a flexible surface coating, could have applications in aviation, space travel and hazardous waste cleanup.

For example, the material could be used to help protect parts of airplanes or rockets that are vulnerable to damage from being soaked in fuel, such as rubber gaskets and o-rings.

“These are vulnerable points in many aerospace applications” said Robert Cohen, the St. Laurent Professor of Chemical Engineering and an author of a paper on the work that will appear in the Dec. 7 issue of Science.

“It would be nice if you could spill gasoline on a fabric or a gasket or other surface and find that instead of spreading, it just rolled off,” Cohen said.

Creating a strongly oil-repelling, or “oleophobic” material, has been challenging for scientists, and there are no natural examples of such a material.

“Nature has developed a lot of methods for waterproofing, but not so much oil-proofing,” said Gareth McKinley, MIT School of Engineering Professor of Teaching Innovation in the Department of Mechanical Engineering and a member of the research team. “The conventional wisdom was that it couldn't be done on a large scale without very special lithographic processes.”

The tendency of oils and other hydrocarbons to spread out over surfaces is due to their very low surface tension (a measure of the attraction between molecules of the same substance).

Water, on the other hand, has a very high surface tension and tends to form droplets. For example, beads of water appear on a freshly waxed car (however, over a period of time, oil and grease contaminate the surface and the repellency fades). That difference in surface tension also explains why water will roll off the feathers of a duck, but a duck coated in oil must be washed with soap to remove it.

The MIT team overcame the surface-tension problem by designing a material composed of specially prepared microfibers that essentially cushion droplets of liquid, allowing them to sit, intact, just above the material's surface.

When oil droplets land on the material, which resembles a thin fabric or tissue paper, they rest atop the fibers and pockets of air trapped between the fibers. The large contact angle between the droplet and the fibers prevents the liquid from touching the bottom of the surface and wetting it.

The microfibers are a blend of a specially synthesized molecule called fluoroPOSS, which has an extremely low surface energy, and a common polymer. They can be readily deposited onto many types of surfaces, including metal, glass, plastic and even biological surfaces such as plant leaves, using a process known as electrospinning.

The researchers have also developed some dimensionless design parameters that can predict how stable the oleophobicity or oil- resistance between a particular liquid and a surface will be. These design equations are based on structural considerations, particularly the re-entrant nature (or concavity) of the surface roughness, and on three other factors: the liquid's surface tension, the spacing of the fibers, and the contact angle between the liquid and a flat surface.

Using these relationships, the researchers can design fiber mats that are optimized to repel different hydrocarbons. They have already created a non-woven fabric that can separate water and octane (jet fuel), which they believe could be useful for hazardous waste cleanup.

The Air Force, which funded the research and developed the fluoroPOSS molecules, is interested in using the new material to protect components of airplanes and rockets from jet fuel.

Lead author of the paper is Anish Tuteja, a postdoctoral associate in MIT's Department of Chemical Engineering. Other MIT authors are Wonjae Choi, graduate student in mechanical engineering, Minglin Ma, graduate student in chemical engineering, and Gregory Rutledge, professor of chemical engineering. Joseph Mabry and Sarah Mazzella of the Air Force Research Laboratory at Edwards Air Force Base are also authors on the paper.

MIT News Office | Elizabeth A. Thomson
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht Breakthrough in blending metals
24.09.2018 | Tokyo Institute of Technology

nachricht To improve auto coatings, new tests do more than scratch the surface
21.09.2018 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>