Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argonne scientists use unique diamond anvils to view oxide glass structures under pressure

14.11.2007
Researchers at the U.S. Department of Energy's Argonne National Laboratory have used a uniquely-constructed perforated diamond cell to investigate oxide glass structures at high pressures in unprecedented detail.

Argonne physicist Chris Benmore and postdoctoral appointee Qiang Mei, along with colleagues at the University of Arizona, used microscopic laser-perforated diamond anvil cells to generate pressures of up to 32 gigapascals (GPa) – roughly one-tenth the pressure at the center of the Earth. By "squashing" vitreous (glassy) arsenic oxide samples between the anvils, the researchers were able to determine the mechanism behind the structure's atypical behavior under high-pressure.

This research may have far-reaching affects in the geophysical sciences, Benmore said, because oxide glasses and liquids represent a significant percentage of the materials that make up the Earth. For example, knowing the atomic structure of oxide materials at high pressures may give scientists a window on the behaviors of magma during the formation of the early Earth and moon. "We now have a technique where we can look a lot of different silicate glasses that are relevant to the Earth's process and at the complex behaviors of the melts that formed the Earth’s mantle," he said.

During their investigation, Benmore and Mei noticed that if arsenic oxide was subjected to high pressures the material underwent an unusual transformation at about 20 GPa, as the color of the compound changed from transparent to red. However, they did not know the atomic cause for this behavior.

By performing x-ray pair distribution function experiments at Argonne's Advanced Photon Source (APS), however, Benmore and Mei were able to see the atomic reconfiguration that produced the color change. Arsenic oxide, at normal pressures, typically exists in isolated molecular "cages" in which four arsenic atoms are surrounded by three oxygen atoms apiece – each of the six oxygen atoms is bounded to two arsenic atoms. When the pressure rose above 20 GPa, however, many of these molecular cages collapsed, creating new isomers in which each arsenic atom was bonded to six oxygen atoms.

Regular diamond anvils could not be used because they caused a great deal of background scattering that obscured the signal from the material. Previous experiments on vitreous materials had used mechanically drilled diamond anvil cells to create the high pressures, but these routinely failed at pressures above 15 GPa. This experiment involved one of the first-ever uses of laser-perforated diamond anvils combined with micro-focused high energy x-ray diffraction techniques, which have the ability to generate high pressures without also producing background noise.

Benmore hopes to extend his research to liquid oxides and silicates by heating them pass their melting points. By doing so, he expects to gain a better understanding of the structural transition, which is expected to occur more abruptly and be reversible in the liquid phases of these materials.

Angela Hardin | EurekAlert!
Further information:
http://www.anl.gov

More articles from Materials Sciences:

nachricht From foam to bone: Plant cellulose can pave the way for healthy bone implants
19.03.2019 | University of British Columbia

nachricht Additive printing processes for flexible touchscreens: increased materials and cost efficiency
19.03.2019 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>