Getting Light to Bend Backwards

While developing new lenses for next-generation sensors, researchers have crafted a layered material that causes light to refract, or bend, in a manner nature never intended.

Refraction always bends light one way, as one can see in the illusion of a “bent” drinking straw when observed through the side of a glass. A new metamaterial crafted from alternating layers of semiconductors (indium-gallium-arsenic and aluminum-indium-arsenic) acts as a single lens that refracts light in the opposite direction.

Refraction is the reason that lenses have to be curved, a trait that limits image resolution. With the new metamaterial, flat lenses are possible, theoretically allowing microscopes to capture images of objects as small as a strand of DNA. The current metamaterial lens works with infrared light, but the researchers hope the technology will expand to other wavelengths in the future.

Earlier efforts have crafted metamaterials that bend light in a similar way, but this is the first to do so using a 3-dimensional structure and a metamaterial comprised entirely of semiconductors. Those traits will prove critical for incorporating the technology into devices such as chemical threat sensors, communications equipment and medical diagnostics tools.

The paper describing the technology appeared online Oct. 14, 2007, in Nature Materials.

The research was developed primarily at NSF's Mid-Infrared Technologies for Health and the Environment Engineering Research Center and NSF's Princeton Center for Complex Materials Materials Research Science and Engineering Center.

Additional information is available in the Princeton University press release at: http://www.princeton.edu/main/news/archive/S19/21/37O65/

Media Contact

Josh Chamot EurekAlert!

More Information:

http://www.nsf.gov

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors