Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastic with changeable conductivity developed by chemical engineer

11.04.2007
Dr. Yueh-Lin (Lynn) Loo at The University of Texas at Austin has modified a plastic so its ability to carry an electrical current can be altered during manufacturing to meet the needs of future electronic devices.

Loo, an assistant professor of chemical engineering, studies the plastic called polyaniline because it could serve as flexible, inexpensive wiring in future products such as military camouflage that changes colors, foldable electronic displays and medical sensors.

By combining polyaniline with a chemical that gives it conductivity, Loo discovered she could increase the plastic’s conductivity one- to six-fold based on the version of the chemical added. The results involving the chemical polymer acid were published in the April 7 issue of the Journal of Materials Chemistry.

Chemically altered polyaniline has several advantages over the more commonly used metals, like gold and copper, in devices other than computers. For example, Loo’s previous research has demonstrated that “doped” polyaniline can be manufactured in solution at room temperatures and without vacuum chambers. Producing metal-based wires requires special manufacturing conditions in addition to the high cost of the metals.

Since Loo’s laboratory submitted their research to the Journal of Materials Chemistry, they have developed a version of polyaniline whose conductivity is 10 times higher than before. However, that level of electrical conductivity still doesn’t rival that of copper, which is used to produce high-speed interconnections.

That effort will be based on the greater understanding Loo has gained of the polyaniline/polymer acid described in the Journal of Materials Chemistry article. In the article, graduate student Joung Eun Yoo and other members of Loo’s laboratory began determining how higher-mass versions of polymer acid improve the plastic’s conductivity when the two materials are combined. So far, they have learned that the higher mass acids attach to the plastic in longer chains, and induce a less-ordered internal structure (crystallinity) within the plastic.

“Understanding how the structure of this polyaniline material changes when its conductivity changes will be crucial for selecting the right material for different consumer applications,” Loo said.

She noted that the ability of the plastic to change colors depending on whether it was conductive or not could be especially useful.

“Its general versatility could lead to a variety of new consumer products in upcoming years,” she said.

Loo has begun collaborating with Research Professor Adam Heller at the university to investigate using polyaniline as part of a sensor material in medical devices. Heller previously developed two commercially available devices to monitor glucose levels in people with diabetes.

Loo’s latest published research was funded by a Young Investigator Award she received in 2005 from the Arnold and Mabel Beckman Foundation, and by a Dupont Young Professor Grant. Loo’s innovative research also has led to her selection in 2004 as one of Technology Review's Top 100 Young Investigators, the same year she received a National Science Foundation CAREER Award.

Barbra Rodriguez | EurekAlert!
Further information:
http://www.engr.utexas.edu

More articles from Materials Sciences:

nachricht Beyond conventional solution-process for 2-D heterostructure
22.06.2018 | Science China Press

nachricht Graphene assembled film shows higher thermal conductivity than graphite film
22.06.2018 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>