Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanocomposite research yields strong and stretchy fibers

23.01.2007
Lycra-like materials were inspired by spider silk

Creating artificial substances that are both stretchy and strong has long been an elusive engineering goal. Inspired by spider silk, a naturally occurring strong and stretchy substance, MIT researchers have now devised a way to produce a material that begins to mimic this combination of desirable properties.

Such materials, known as polymeric nanocomposites, could be used to strengthen and toughen packaging materials and develop tear-resistant fabrics or biomedical devices. Professor Gareth McKinley, graduate student Shawna Liff and postdoctoral researcher Nitin Kumar worked at MIT's Institute for Soldier Nanotechnologies (ISN) to develop a new method for effectively preparing these materials. The research appears in the January issue of Nature Materials.

Engineers are already able to create materials that are either very strong or very stretchy, but it has been difficult to achieve both qualities in the same material. In the last few years scientists have determined that the secret behind the combined strength and flexibility of spider silk lies in the arrangement of the nano-crystalline reinforcement of the silk while it is being produced.

"If you look closely at the structure of spider silk, it is filled with a lot of very small crystals," says McKinley, a professor of mechanical engineering. "It's highly reinforced."

The silk's strength and flexibility come from this nanoscale crystalline reinforcement and from the way these tiny crystals are oriented towards and strongly adhere to the stretchy protein that forms their surrounding polymeric matrix.

Liff, a Ph.D. student in mechanical engineering, and Kumar, a former MIT postdoctoral associate, teamed up to figure out how to begin to emulate this nano-reinforced structure in a synthetic polymer (A polymer or plastic consists of long chains composed of small repeating molecular units). Numerous earlier unsuccessful attempts, tackling the same issue, relied on heating and mixing molten plastics with reinforcing agents, but Liff and Kumar took a different approach: They focused on reinforcing solutions of a commercial polyurethane elastomer (a rubbery substance) with nanosized clay platelets.

They started with tiny clay discs, the smallest they could find (about 1 nanometer, or a billionth of a meter thick and 25 nanometers in diameter). The discs are naturally arranged in stacks like poker chips, but "when you put them in the right solvent, these 'nanosized poker chips' all come apart," said McKinley.

The researchers developed a process to embed these clay chips in the rubbery polymer--first dissolving them in water, then slowly exchanging water for a solvent that also dissolves polyurethane. They then dissolved the polymer in the new mixture, and finally removed the solvent. The end result is a "nanocomposite" of stiff clay particles dispersed throughout a stretchy matrix that is now stronger and tougher.

Importantly, the clay platelets are distributed randomly in the material, forming a structure much like the jumble that results when you try to stuff matches back into a matchbox after they have all spilled out.

Instead of a neatly packed arrangement, the process results in a very disorderly "jammed" structure, according to McKinley. Consequently the nanocomposite material is reinforced in every direction and the material exhibits very little distortion even when heated to temperatures above 150 degrees Celsius.

In a Nature Materials commentary that accompanied the research paper, Evangelos Manias, professor of materials science and engineering at the University of Pennsylvania, suggests that "molecular composites" such as those developed by the MIT group are especially suitable for new lightweight membranes and gas barriers, because the hard clay structure provides extra mechanical support and prevents degradation of the material even at high temperatures. One possible use for such barriers is in fuel cells.

The U.S. military is interested in such materials for use in possible applications such as tear-resistant films or other body-armor components. The military is also interested in thinner, stronger packaging films for soldiers' MREs (meals ready to eat) to replace the thick and bulky packaging now used.

Fabric companies have also expressed interest in the new materials, which can be used to make fibers similar to stretchy compounds such as nylon or Lycra. The new approach to making nanocomposites can also be applied to biocompatible polymers and could be used to make stents and other biomedical devices, McKinley said.

The research was funded by the U.S. Army through MIT's Institute for Soldier Nanotechnologies and by the National Science Foundation. McKinley's team was assisted by technical staff at the ISN, including research engineer Steven Kooi, who helped prepare special samples for transmission electron microscopy.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>