Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metamaterials found to work for visible light

09.01.2007
For the first time ever, researchers at the U.S. Department of Energy’s Ames Laboratory have developed a material with a negative refractive index for visible light.

Ames Laboratory senior physicist Costas Soukoulis, working with colleagues in Karlsruhe, Germany, designed a silver-based, mesh-like material that marks the latest advance in the rapidly evolving field of metamaterials, materials that could lead to a wide range of new applications as varied as ultrahigh-resolution imaging systems and cloaking devices.

The discovery, detailed in the Jan. 5 issue of Science and the Jan. 1 issue of Optic Letters, and noted in the journal Nature, marks a significant step forward from existing metamaterials that operate in the microwave or far infrared – but still invisible –regions of the spectrum. Those materials, announced this past summer, were heralded as the first step in creating an invisibility cloak.

Metamaterials, also known as left-handed materials, are exotic, artificially created materials that provide optical properties not found in natural materials. Natural materials refract light, or electromagnetic radiation, to the right of the incident beam at different angles and speeds. However, metamaterials make it possible to refract light to the left, or at a negative angle. This backward-bending characteristic provides scientists the ability to control light similar to the way they use semiconductors to control electricity, which opens a wide range of potential applications.

“Left-handed materials may one day lead to the development of a type of flat superlens that operates in the visible spectrum,” said Soukoulis, who is also an Iowa State University Distinguished Professor of Liberal Arts and Sciences. “Such a lens would offer superior resolution over conventional technology, capturing details much smaller than one wavelength of light to vastly improve imaging for materials or biomedical applications,” such as giving researchers the power to see inside a human cell or diagnose disease in a baby still in the womb.

The challenge that Soukoulis and other scientists who work with metamaterials face is to fabricate them so that they refract light at ever smaller wavelengths. The “fishnet” design developed by Soukoulis’ group and produced by researchers Stefan Linden and Martin Wegener at the University of Karlsruhe was made by etching an array of holes into layers of silver and magnesium fluoride on a glass substrate. The holes are roughly 100 nanometers wide. For some perspective, a human hair is about 100,000 nanometers in diameter.

“We have fabricated for the first time a negative-index metamaterial with a refractive index of -0.6 at the red end of the visible spectrum (wavelength 780 nm),” said Soukoulis. “This is the smallest wavelength obtained so far.”

While the silver used in the fishnet material offers less resistance when subjected to electromagnetic radiation than the gold used in earlier materials, energy loss is still a major limiting factor. The difficulties in manufacturing materials at such a small scale also limit the attempts to harness light at ever smaller wavelengths.

“Right now, the materials we can build at THz and optical wavelengths operate in only one direction,” Soukoulis said, “but we’ve still come a long ways in the six years since negative-index materials were first demonstrated.”

“However, for applications to come within reach, several goals need to be achieved,” he added. “First, reduction of losses by using crystalline metals and/or by introducing optically amplifying materials; developing three-dimensional isotropic designs rather than planar structures; and finding ways of mass producing large-area structures.”

The Basic Energy Sciences Office of the DOE’s Office of Science funds Ames Laboratory’s research on metamaterials. Ames Laboratory, which is celebrating its 60th anniversary in 2007, is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials.

Kerry Gibson | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Materials Sciences:

nachricht Proteins imaged in graphene liquid cell have higher radiation tolerance
10.12.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

nachricht High-temperature electronics? That's hot
07.12.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>