Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polarized Particles Join Toolbox For Building Unique Structures

13.10.2006
Researchers at the University of Illinois at Urbana-Champaign have created polarized, spherical particles that spontaneously self-assemble into clusters with specific shapes and distributions of electric charge. The polarized particles can be used in the directional self-assembly of intricate shapes and unique structures.
"The world abounds with particles that have traditionally been treated as geometrically symmetric, chemically isotropic and electrically uniform," said Steve Granick, a professor of materials science and engineering, chemistry and physics. "We have muddied the waters a bit by asking: 'What happens when we build clusters from particles that have an uneven distribution of electric charge?' "

The polarized spheres are called Janus particles; Janus was the Roman god of change, often portrayed with two faces gazing in opposite directions. The spheres offer new opportunities in particle engineering for building particular structures. The clusters may also prove useful as simple systems in which to explore the role of charge interactions in determining how proteins aggregate. Granick and his collaborators describe their work in a paper accepted for publication in the journal Nano Letters, and posted on its Web site.

To make their Janus particles, the researchers begin with negatively charged beads one micron in diameter. Using electron beam deposition, they coat one hemisphere of the beads with a gold film, which is then made positively charged.

When placed in solution, the particles spontaneously self-assemble into specific geometrical shapes depending on the number of particles. For example, clusters of seven particles resemble a flywheel, which can revolve around a polar axle.

The compact shapes differ fundamentally from the strings and rings formed by magnetic particles, said Granick, who also is a researcher at the Frederick Seitz Materials Research Laboratory and at the Beckman Institute for Advanced Science and Technology.

"The observed shapes are in excellent agreement with computer simulations," said Erik Luijten, a professor of materials science and engineering, and a corresponding author of the paper. "The simulations not only show you the shapes, they also show you how the particles are oriented in the cluster."

Surprisingly, the charge distribution of the initial Janus particles is preserved in the clusters. One half of each cluster tends to be positively charged; the other half negatively charged. This uneven distribution of surface charge could be utilized, perhaps, in the directional self-assembly of particles into more elaborate and intricate shapes.

"Future work could consider particles whose shape is not just spherical, but also rod-like or oblate," Granick said. "This is just the beginning of something that will catch a lot of people's imaginations."

Lead authors of the paper were graduate student Liang Hong and postdoctoral research associate Angelo Cacciuto. The work was funded by the National Science Foundation and the Petroleum Research Fund.

Editor's note: To reach Steve Granick, call 217-333-5720; e-mail: sgranick@uiuc.edu.

To reach Erik Luijten, call 217-244-5622; e-mail: luijten@uiuc.edu.

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Materials Sciences:

nachricht Machine-learning predicted a superhard and high-energy-density tungsten nitride
18.07.2018 | Science China Press

nachricht In borophene, boundaries are no barrier
17.07.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>