Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New wood-plastic composites to boost industry, help use waste products

05.10.2006
Wood science researchers in the College of Forestry at Oregon State University have developed new wood-plastic composites that are stronger and less expensive than any similar products now available – a major breakthrough for this growing industry.

Wood-plastic composites, often used for such things as outdoor decking, are one of the fastest growing components of the wood composites industry. Some projections have suggested that these products, which were used for less than 1 percent of decking in the mid-1990s, may capture 20 percent of that market by 2010.

"Composite products made from wood and plastic are highly desirable for their low maintenance and ability to resist rot," said Kaichang Li, an associate professor in the OSU Department of Wood Science and Engineering. "But their use has been limited because of high cost and low strength, a result of inadequate adhesion between the wood fibers and plastic."

Fundamentally, Li said, this is because wood and plastic are like oil and water, and do not mix well. Wood is hydrophilic – it absorbs water – and plastic is hydrophobic, repelling it. A "compatibilizer," typically a polymer that bridges the interface between the wood and plastic in these products, improves stress transfer and increases their strength and stiffness.

The new wood-plastic composites use superior compatibilizers developed in Li's laboratory, and an innovative technology for mixing wood and thermoplastics such as nylons, in which the melting temperature of the plastic is higher than the wood degradation temperature.

With this approach, the new wood-plastic composites can use very inexpensive plastics such as those found in old carpet fibers – about 4.4 billion pounds of which are now wasted every year, going into landfills where they are extremely slow to biodegrade and pose a significant waste disposal problem.

They could also open the door for improved utilization of low-grade woody biomass from needed thinning of Oregon forests, which is increasingly being done to improve forest health and prevent catastrophic wildfire. A better "value added" use for that wood fiber could be important, experts say.

The technology may prompt a major expansion of the wood-plastic composite industry into new types of products and uses, experts say. In particular, such products may help further replace wood treated with chemical preservatives, some of which have already been banned due to health and environmental concerns.

"This new material is far superior to anything currently available in the wood-plastic composite market," Li said. "It should become an important new product and an industry with the potential for rapid growth."

So far, the research on the new product has only been done at a laboratory scale. Findings have been published in the Journal of Applied Polymer Science and other professional publications.

Scientists now want to duplicate the findings at something much closer to an industrial scale, which they will be able to do with the contribution to OSU of a $180,000 extruder from ENTEK, a Lebanon, Ore., firm that manufactures extruders for bio-based composites.

A local startup company in Corvallis, Sustainable Industries Group, LLC, is also supporting the research. And the Oregon Nanoscience and Microtechnologies Institute has provided support to get the new equipment installed, which also has the capability to produce nanocomposite materials.

The new wood-plastic composites are just the latest advance with new adhesives and materials from Li's research programs. In the past few years, his research also began a revolution in wood adhesives. Inspired by the way mussels on the ocean shore cling to rocks despite pounding waves, Li found their secret – an unusual adhesive that could be mimicked by modifications of abundant and inexpensive soy protein. The modified soy protein can be used as an adhesive for production of plywood, particleboard and other wood composite panels, without giving off the carcinogenic formaldehyde fumes common with traditional wood adhesives.

That patented adhesive has already been commercially used for production of wood composite panels by Columbia Forest Products, the largest producer of decorative interior panels in the nation. All plywood plants of Columbia Forest Products have been converted to using the new technology in face of rapidly rising demand.

And one of the latest innovations, still in early research phases, is cellulose crystals from wood for use in rubber products. Products such as tires now often use silica in their manufacturing processes, which can create waste disposal concerns. The use of wood – a renewable material – might address that problem and some day have the nation driving on tires made at least partially out of trees.

Kaichang Li | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>