Quick Reaction "Chromophores" Emerge as New Class of Semiconductors, Suitable for Nanoscale Electronics

In chemistry, a chromophore is any molecule or part of a molecule responsible for its color. Light hitting a chromophore excites an electron, which then emits light of a particular color.

“Here we have created chains of chromophores that are primed to move charge,” said Michael J. Therien, a professor in Penn's Department of Chemistry and lead researcher in the project. “When a charge is introduced to an array of chromophores linked closely together, it enables electrons to quickly hop from one chromophore to the next.”

A charge can travel down a chain of chromophores at a rate of about 10 million times a second, which means that these chromophore arrays can do anything that organic semiconductors currently do, only much faster.

Penn researchers Kimihiro Susumu and Paul Frail built chromophore circuits that could, for example, serve as the functional elements in disposable plastic electronics, radio frequency identification tags, electronic drivers for active-matrix liquid crystal displays and organic light-emitting diodes as well as for lightweight solar cells.

Therien and his colleagues have found that the key to creating materials that allow electrons to move so quickly and freely is to build structures that feature long chromophores and short linkers between these units.

“This arrangement of linked chromophores leads to small structural changes when holes (positive charges) and electrons (negative charges) are introduced into these structures and these physical changes help propagate the charge,” said Paul Angiolillo of St. Josephs University, co-author of the study. “The introduction of these structural changes is actually a new idea in the design of conducting and semi-conducting organic materials.”

The semiconductor industry is well aware of potential barriers to creating faster and faster electronics. In terms of circuitry, size directly relates to speed. Currently, circuits based on semiconductors have shrunk to dimensions just below 100 nanometers, or one hundred billionths of a meter, across. Chromophores may represent the first relatively easy-to-use materials that function on the nanoscale.

“In order to move significantly past the 100-nano barrier in electronics, we need to develop nano structures that let electrons move, as they do through wires and semiconductors,” Therien said. “Our work also shows for the first time that molecular conductive elements can be produced on a 10-nanometer length scale, providing an important functional element for nanoscale circuitry.”

This research was supported by the Department of Energy and the National Science Foundation.

Media Contact

Greg Lester EurekAlert!

More Information:

http://www.upenn.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors