Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First neutrons produced by DOE’s Spallation Neutron Source

03.05.2006


One of the largest and most anticipated U.S. science construction projects of the past several decades has passed its most significant performance test. The Department of Energy’s Spallation Neutron Source, located at Oak Ridge National Laboratory, has generated its first neutrons.



Research conducted at the SNS will lay the groundwork for the next generation of materials research. Scientists believe that the greatly improved ability to understand the structure of materials could lead to a virtually limitless number of innovations, including stronger and lighter airplanes, a new generation of batteries and fuel cells, and time-released drugs that target a specific body organ.

Just after 2 p.m. Friday, a pulse of protons from the SNS’s accelerator complex, traveling at nearly the speed of light, struck its mercury target. The protons "spalled" neutrons from the nuclei of mercury circulating inside the target. These first neutrons were recorded on equipment specially installed for the commissioning.


"To have observed ’first neutrons’ on the initial SNS run is a tribute to the men and women who have worked so hard to design, construct, and now operate this magnificent facility," said Dr. Raymond L. Orbach, Director of the DOE Office of Science. "To bring a project of this scale and cost to completion on budget and ahead of schedule represents a model for all future large scale scientific projects to emulate. All of us owe all who have contributed to this achievement sincere thanks and appreciation for the opportunities you have now created for our world. It is a great moment for science."

With the linac operating initially at a much lower power than its eventual 1.4 megawatts, the target nevertheless was struck by trillions of protons, generating the first of what will become the world’s most intense beams of neutrons for materials research.

"These first neutrons are representative of the technological breakthroughs required to establish the SNS as the world’s leading facility for neutron research," said SNS Director Thom Mason. "We took on the challenges and technical risks involved in designing and delivering the linac, ring and target because we knew how much the scientific user community would benefit from the results."

The SNS’s mercury target is the first of its kind. Researchers chose mercury for the target medium because, as a relatively heavy element, it is rich in neutrons. Mercury also has the capacity to absorb the powerful pulses from the linear accelerator (linac) and accumulator ring. Conventional target materials such as tungsten require cooling with water, which limits power and intensity.

The $1.4 billion SNS will have about eight times the beam power of the world’s currently leading pulsed spallation source. This increase in power, when combined with the advanced instrument technology developed at SNS, will give researchers a net improvement in measured neutron beam intensity of factors of 50 to 100.

The SNS has been commissioned in stages, beginning with the 1,000-foot linac’s front end and continuing through its "warm" and "cold" linac sections to the accumulator ring and, now, the target station, which will direct neutrons eventually to 24 highly specialized instruments. A power upgrade and second target station are already in the conceptual stages.

Operating with more than 100,000 separate and interdependent parts, the SNS is the product of an unprecedented collaboration among six DOE laboratories. Lawrence Berkeley National Laboratory was responsible for the front-end system that generates the proton beam, Los Alamos National Laboratory and Thomas Jefferson National Accelerator Facility designed and built the room-temperature and superconducting sections of the linac, Brookhaven National Laboratory designed the accumulator ring, Argonne National Laboratory is responsible for the initial suite of scientific instrumentation and ORNL designed and built the target station and is ultimately responsible for operating the SNS.

DOE’s Office of Science coordinated the partnership, which is on track to complete the SNS on time and on budget with no compromise in the project’s scope. The seven-year construction of the SNS included a safety record of four million hours without a lost work day due to accidents.

The SNS’s specialized, state-of-the-art instruments will make possible the study of a broad range of materials from superconducting metals to biological tissues. The SNS and ORNL’s recently upgraded High Flux Isotope Reactor together will make Oak Ridge the world’s leading center for studying the structure and dynamics of materials.

The SNS will operate as a user facility that each year will enable 2,000 researchers from the United States and abroad to study the science of materials that form the basis for new technologies in energy, telecommunications, manufacturing, transportation, information technology, biotechnology and health.

Bill Cabage | EurekAlert!
Further information:
http://www.sns.gov

More articles from Materials Sciences:

nachricht Brilliant glow of paint-on semiconductors comes from ornate quantum physics
17.01.2019 | Georgia Institute of Technology

nachricht Viennese scientists develop promising new type of polymers
15.01.2019 | Vienna University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A new twist on a mesmerizing story

17.01.2019 | Physics and Astronomy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>