Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover that nanoparticle shows promise in reducing radiation side effects

06.04.2006


Using transparent zebrafish embryos, researchers at Jefferson Medical College in Philadelphia have shown that a microscopic nanoparticle can help fend off damage to normal tissue from radiation. The nanoparticle, a soccer ball-shaped, hollow, carbon-based structure known as a fullerene, acts like an "oxygen sink," binding to dangerous oxygen radicals produced by radiation.



The scientists, led by Adam P. Dicker, M.D., Ph.D., and Ulrich Rodeck, M.D., see fullerenes as a potentially "new class of radioprotective agents." Dr. Dicker, recently appointed Vice-Chair for Translational Research of the Radiation Therapy Oncology Group, is associate professor of radiation oncology at Jefferson Medical College of Thomas Jefferson University and at the Kimmel Cancer Center at Jefferson. Dr. Rodeck is professor of dermatology at Jefferson Medical College. They will present their team’s results April 5, 2006 at the annual meeting of American Association for Cancer Research in Washington, D.C.

While chemotherapy and radiotherapy are the standard treatments for cancer, they take their respective toll on the body. Radiation can damage epithelial cells and lead to permanent hair loss, among other effects, and certain types of systemic chemotherapy can produce hearing loss and damage to a number of organs, including the heart and kidneys. Some other side effects include esophagitis, diarrhea, and mouth and intestinal ulcers.


To date, only one drug, Amifostine, has been approved by the federal Food and Drug Administration, to help protect normal tissue from the side effects of chemotherapy and radiation. Researchers would like to develop new and improved agents.

Dr. Dicker, director of the Division of Experimental Radiation Oncology at Jefferson Medical College, and his group were exploring the molecular mechanisms responsible for cellular damage from radiation. They collaborated with a Houston-based drug company, C Sixty, and studied its radiation-protective agent, CD60_DF1.

To test how well it worked, they turned to tiny zebrafish embryos, which are transparent for the first month of life and allow scientists to observe closely organ damage produced by cancer treatments. Zebrafish have most of their organs formed by the third day after fertilization.

They gave the embryos different doses of ionizing radiation as well as treatment by either Amifostine, which acted as a control agent, or CD60_DF1. First, they found that CD60_DF1 had almost no toxicity. Then, they saw that CD60_DF1 given before and even immediately after--up to 30 minutes--exposure to X-rays reduced organ damage by one-half to two-thirds, which was as good as the level of protection given by Amifostine.

"We also showed that the fullerene provided organ-specific protection," Dr. Dicker notes. "It protected the kidney from radiation-induced damage, for example, as well as certain parts of the nervous system."

He explains that one way that radiation frequently damages cells and tissues is by producing "reactive oxygen species"--oxygen radicals, peroxides and hydroxyls. The scientists showed that zebrafish embryos exposed to ionizing radiation had more than 50 percent reduction in the production of reactive oxygen species compared to untreated embryos.

Dr. Dicker says that the company has technology enabling certain molecules to be attached to the nanoparticles, which will allow for targeting to specific tissue and organs, further enhancing use of the nanoparticles.

Dr. Dicker and his team plan follow-up studies using mouse models that will allow them to find out whether fullerene protects the entire animal from radiation, and how it works to protect specific organs. They also are interested in exploring its ability to prevent long-term side effects of radiation, such as fibrosis.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>