Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fabrication of Nanometer Scale Patterns with Polymer Langmuir-Blodgett Films

18.01.2006


The continuing trend toward higher circuit density in microelectronic devices has motivated research efforts in varieties of high-resolution lithography techniques, including electron beam (EB), X-ray, and deep UV irradiation. Use of ultra-thin films and new materials have been proposed as approaches to improve resolution in lithography. The Langmuir-Blodgett (LB) technique is very effective method used to prepare well-defined ultra-thin film with controlled thickness and orientation at a molecular level. Therefore, LB films are expected to realize ultra-high resolution photolithography [1-4].



In previous studies, [5-7] we have found that N-octadecylacrylamide forms a uniform LB film with a highly ordered structure, and yielded a fine negative pattern by photopolymerization. Furthermore, we have also succeeded in the preparation of preformed polymer LB film that has a cross-linking group [8]. By the cross-linking reaction with deep UV and electron beam irradiation we obtained a fine negative pattern consisting of two-dimensional network. All of these polymer LB films resulted in negative-tone photopatterns. On the other hand, we also obtained positive type photopatterns using poly(N-tetradecylmethacrylamide)(p(TDMA)) LB films without any development process (self-development) [9, 10]. It was found that the higher sensitivity could be obtained by changing the alkyl side chain to the short-branched type [11]. In addition, the deprotection reaction of t-butoxycarbonyloxy group has also been used in positive patterning of polymer LB films [12-14]. Combining these interesting properties, the improvement of not only the sensitivity but also the imaging quality can be expected. In this work, we prepared the copolymers of photodegradable N-tetradecylmethacrylamide (TDMA) with t-butyl 4-vinylphenyl carbonate (tBVPC) (Figure 1) aiming at the fabrication of a new type of positive resist taking place both main chain scission and polarity change caused by t-butoxycarbonyloxy group deprotection.

Dr. Ian Birkby | EurekAlert!
Further information:
http://www.azom.com/Details.asp?ArticleID=3176
http://www.azonetwork.com

More articles from Materials Sciences:

nachricht Beyond conventional solution-process for 2-D heterostructure
22.06.2018 | Science China Press

nachricht Graphene assembled film shows higher thermal conductivity than graphite film
22.06.2018 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>