Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastic Ceramic

14.12.2005


Scientists from Obninsk in the Kaluga reg. (Russia) have developed a ceramic with unique properties, with heat conductivity and thermoplasticity several times higher than normal ceramics. This means that items made of it, from coffee mugs to fuel pellets for atomic power stations, will serve longer and more reliably than standard ceramics.



During a competition of innovative developments under the 5th International Innovation and Investment Salon that was held 15-18 February 2005, researchers demonstrated some amazing samples.

“A distinguishing feature of our ceramic is its structure,” explains project manager and chief scientist of the Leipunsky Physics-Energy Institute Irina Kurina. “And, as a consequence, the properties are indeed unique. Heat conductivity that exceeds reference data, enhanced plasticity and thermal stability: we have succeeded in obtaining a ceramic in which all these properties are combined.”


Generally speaking, plasticity and high thermal conductivity for massive ceramic products are properties that are almost unrealistic. For example, rubber: if you strike it, individual molecules will as if to move, changing their form a little and the thing remains intact. Or, if metal is heated, surplus heat quickly spreads from the surface to the center and an ingot, say, remains completely intact, only warm. But ceramic is a brittle material: if struck it will break; if heated rapidly it will crack or even fall to pieces.

It is precisely for this reason that a special concept of stability in thermal cycling regimes is introduced for products made from it. Put simply, it is defined in advance how many times a ceramic item can be heated and cooled until it begins to crack by itself, under load or under an impact.

“Generally speaking, there are three types of component in the structure of the ceramic made under our technology: large grains of oxide material (from 50 to 100µm), fine grains (from 1 to 10µm) and a little emptiness. In other words there are pores, located in a special way, predominantly around the boundaries of the grains,” continues Kurina. “Such pores create ideal conditions for plastic deformation. And fine grains additionally soften a mechanical or thermal impact. In the mass of fine grains, the large grains become as if stuck, like cobblestones in sand. The crystalline lattice of such a ceramic is very mobile; it has many defects. In the unusual structure of such a ceramic electron tunneling is possible. This is where the high heat conductivity comes from.”

The principal basis of the technology is both simple and universal in nature. At first it is necessary obtain a powder, whereby the grains have to be of a varied, pre-set size. And there have to be an awful lot of defects in the obtained powder particles! All begins from sedimentation (precipitation): solutions of initial substances are taken, necessary reagents are added, and out comes the sediment – those very particles of the required size.

Then these oxide particles (of aluminum, magnesium and zirconium, thorium or uranium in the case of fuel components) are annealed, pressed and sintered. It is understood that the authors are not disclosing the technological parameters of these parameters and the subject of the know-how. However, all this work is extra confirmation of the fact that chemistry is not only strictly a matter of calculation, although the parameters of the new materials can be optimized with computer modeling, which is what the authors are doing. It is also an art form, the talent and intuition of the scientists who enable the achievement of what would seem to be the impossible; such as making a heat-conducting oxide ceramic, and of any kind.

Andrew Vakhliaev | alfa
Further information:
http://tech-db.istc.ru/istc/sc.nsf/events/plastic-ceramic

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>