Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticle synthesis allows particle size and shape to be tailored to end applications

30.11.2005


Biomolecule and microwave assisted solvothermal syntheses of nanomaterials



Nanomaterials are increasingly gaining the attention of not only the scientific community, but also the public due to their unique properties which endear them to new and exciting applications. These special properties can vary markedly from those of the analogous bulk materials. The physical and chemical properties of the nanomaterials tend to be exceptionally closely dependent on their size and shape or morphology. As a result, materials scientists are focusing their efforts on developing simple and effective methods for fabricating nanomaterials with controlled size and morphology and hence, tailoring their properties.

In this paper published in AZojomo*, Pennsylvania State University researchers Qingyi Lu, Feng Gao, Dongsheng Li and Sridhar Komarneni, synthesized and characterized nanomaterials of controlled size and shape. These materials have potential to be used in several different applications including interconnects in electronic devices with super functions and bio-molecule separations. The methods they employed included the microwave-assisted solvothermal or biomolecule-assisted hydrothermal methods.


By altering the synthesis methods, the researchers were able to create a range of different nanoparticles. These synthesized nanomaterials varied from uniformly sized spherical nanoparticles, nanowires, nanorods to arrays with oriented mesochannels.

The study shows that conventional and microwave assisted hydro or solvothermal methods are highly suited for the synthesis of nanomaterials of controlled size and shape under environmentally benign conditions for arrange of different applications.

Dr. Ian Birkby | EurekAlert!
Further information:
http://www.azom.com

More articles from Materials Sciences:

nachricht Topological material switched off and on for the first time
11.12.2018 | ARC Centre of Excellence in Future Low-Energy Electronics Technologies

nachricht Proteins imaged in graphene liquid cell have higher radiation tolerance
10.12.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>