Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building a better hydrogen trap

21.11.2005


Using building blocks that make up ordinary plastics, but putting them together in a whole new way, University of Michigan researchers have created a class of lightweight, rigid polymers they predict will be useful for storing hydrogen fuel. The work is described in today’s (Nov. 17) issue of the journal Science.

The trick to making the new materials, called covalent organic frameworks (COFs), was coaxing them to assume predictable crystal structures---something that never had been done with rigid plastics.

"Normally, rigid plastics are synthesized by rapid reactions that randomly cross-link polymers," said postdoctoral fellow Adrien Côté, who is first author on the Science paper. "Just as in anything you might do, if you do it really fast, it can get disorganized." For that reason, the exact internal structures of such materials are poorly understood, making it difficult to predict their properties. But Côté and colleagues tweaked reaction conditions to slow down the process, allowing the materials to crystallize in an organized fashion instead of assembling helter skelter.



As a result, the researchers can use X-ray crystallography to determine the structure of each type of COF they create and, using that information, quickly assess its properties.

"Once we know the structure and properties, our methodology allows us to go back and modify the COF, making it perform better or tailoring it for different applications," said Côté.

Côté collaborated on the work with Omar Yaghi, who is the Robert W. Parry Collegiate Professor of Chemistry at U-M. Over the past 15 years, Yaghi has taken a similar approach to producing materials called metal-organic frameworks (MOFs). On the molecular level, MOFs are scaffolds made up of metal hubs linked together with struts of organic compounds. By carefully choosing and modifying the chemical components used as hubs and struts, Yaghi and his team have been able to define the angles at which they connect and design materials with the properties they want.

Like MOFs, COFs can be made highly porous to increase their storage capacity. But unlike MOFs, COFs contain no metals. Instead, they’re made up of light elements – hydrogen, boron, carbon, nitrogen and oxygen – that form strong links (covalent bonds) with one another.

"Using light elements allows you to generate lightweight materials," said Côté. "That’s very important for hydrogen fuel storage, because the lighter the material, the more economical it is to transport around in a vehicle. The strong covalent bonds also make COFs very robust materials." Although the main thrust of the current research is creating materials for gas storage in fuel cells, Côté, Yaghi and colleagues also are exploring variations of COFs that might be suitable for use in electronic devices or catalytic applications.

"This is the first step to what we think is going to be a very large and useful class of materials," Côté said.

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>