UC Davis researchers shed new light on how chemotherapy-induced leukemia develops

Potentially fatal side-effect may be preventable, new study suggests


Topoisomerase II inhibitors are among the most successful chemotherapy drugs used to treat human cancer. But a small percentage of patients treated with these agents recover from their initial malignancy only to develop a second cancer, leukemia.
Researchers at UC Davis Cancer Center have shed new light on this poorly understood process. In a study to be published in the Nov. 22 issue of the journal Leukemia, the researchers report that topoisomerase II inhibitors do not directly cause leukemia — and suggest that it may be possible to prevent therapy-induced leukemia. (The study was posted online in the journal on Sept. 29.)

“There are two competing theories of how these therapy-induced leukemias arise,” said Andrew Vaughan, a radiation biologist at UC Davis Cancer Center and senior author of the new study. “One is that the topoisomerase II inhibitor drugs, in combination with the topoisomerase II enzyme they target, induce random genetic changes that lead to leukemia onset. The other is that another, potentially correctable process is at work.”

In the study, Vaughan and his colleagues at Loyola University and the Sacramento Veterans Administration Hospital linked what appears to be the earliest molecular event involved in the development of therapy-induced leukemia, the rearrangement of the MLL gene (a gene involved in leukemia), to factors that activate apoptosis, or programmed cell death.

“This rearrangement appears to be independent of the topoisomerase II enzyme,” Vaughan said. “This suggests that another process, such as apoptosis itself, is involved.”

Topoisomerase II inhibitors work by goading cancerous cells into apoptosis. Vaughan suggests that therapy-induced leukemia may occur when some cancer cells fail to complete apoptosis and instead survive in a mutated form that contains the leukemia-inducing MLL gene.

“The good news is that apoptosis is a well-understood and potentially correctable process,” Vaughan said. “Through genetic or pharmacologic means, we may be able to manipulate the cells that survive chemotherapy to complete apoptosis and die — averting the development of leukemia.”

Media Contact

Claudia Morain EurekAlert!

More Information:

http://www.ucdmc.ucdavis.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors