Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping Out a High-Temperature Superconductor

15.09.2005


Researchers at the U.S. Department of Energy’s Brookhaven National Laboratory have discovered a way to significantly increase the amount of electric current carried by a high-temperature superconductor, a material that conducts electricity with no resistance. This is an important step in the drive to create superconductor-based electric and power-delivery devices, such as power transmission lines, motors, and generators. The results are explained in the September 12, 2005, online edition of Applied Physics Letters.



“In theory, superconducting materials can conduct an enormous amount of electric current. But when incorporated into actual devices, certain factors tend to limit the current,” said Brookhaven materials scientist Qiang Li, a co-author on the paper. “We studied these factors and found that one, which we call ‘substrate roughness,’ can actually significantly increase the current-carrying capacity.”

The superconducting material studied here consists of the elements yttrium, barium, copper, and oxygen. Dubbed YBCO, it is a member of a class of copper- and oxygen-containing superconductors called “cuprates.” Cuprates are “high-temperature” superconductors because they superconduct at temperatures much “warmer” than conventional superconductors (although still very cold) — for example, -300°F rather than -440°F. This difference, while not huge, is enough to make cuprates more viable for practical applications than materials that must be kept much colder.


In many of these applications, YBCO films are deposited onto a ‘normal’ metal surface (the “substrate”), forming components known as coated conductors. One of the factors widely thought to degrade the performance of coated conductors is the roughness of the metal surface.

To verify this, Li and his colleagues set out to study and measure how the roughness of the substrate affects the current-carrying capacity of YBCO.

The researchers deposited a YBCO layer onto a substrate prepared with two distinct areas: a rough, corrugated region with nanometer (billionth-of-a-meter) sized ridges and grooves, and a smooth region. This configuration allowed the group to directly compare the behavior of the YBCO film on both surface types. They were able to do this using electrical-transport measurement techniques, which track the amount of supercurrent passing through the material, and “magneto-optical” imaging, a technique used to study superconductors by following their magnetic behavior.

“What we found is remarkable and surprising,” said lead author Zuxin Ye, a graduate student under Li’s supervision. “Rather than limiting the current, the nanoscaled corrugated surface produces more than a 30 percent increase in the supercurrent carried by the YBCO films. This suggests that metal substrates with some degree of roughness at the nanoscale might help improve the performance of high-temperature superconductors.”

The work is the result of a collaboration between scientists in Brookhaven Lab’s Materials Science Department, the Condensed Matter Physics group within the Physics Department, and the Lab’s Center for Functional Nanomaterials. It was supported by the Office of Basic Energy Sciences within the U.S. Department of Energy’s Office of Science.

Laura Mgrdichian | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>