Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers creating moldable materials for fuel cell bipolar plates

02.09.2005


Composite material, compression process to reduce time, cost of manufacturing bipolar plates



A single fuel cell does not produce enough energy to power a car. So fuel cells are stacked, with a bipolar plate between each cell through which electrons are conducted. The hydrogen fuel and oxygen, which are part of the fuel cell chemistry, enter the plate through channels along the face on each side of the plates. Creating the channels in the bipolar plate is a manufacturing challenge.

About 29 percent of the cost of a fuel cell stack is the bipolar plate, and machining channels into the plates is a significant factor, said Donald Baird, who is the Harry C. Wyatt Professor of Chemical Engineering at Virginia Tech. "Machining 1 millimeter by 1 millimeter (1 mm x 1 mm) channels is expensive and time consuming."


So researchers at Virginia Tech are developing compression moldable composite bipolar plates with channels included. Baird and Jianhua Huang, research scientist in chemical engineering at Virginia Tech, will present their research at the 230th American Chemical Society National Meeting, being held in Washington, D.C., Aug. 28-Sept. 1.

Using a thermoplastic composite and a wet-lay process, the researchers created a material with high electrical conductivity and good mechanical properties, that is a barrier to hydrogen and oxygen, and is easy to manufacture so that the channels can be molded in. The properties of the bipolar plates, which will be discussed at the ACS meeting, exceed the Department of Energy’s minimum standards and industry requirements in terms of electrical conductivity along the plate and of strength. "Through plane conductivity needs some improvement (presently values as high as 35 S/cm are obtained)," Baird said.

The Virginia Tech researchers are continuing to work on optimizing the manufacturing scheme – how fast the channels can be created and the material can be cooled, Baird said. "We are also working on different methods of heating, such as induction versus microwaving."

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>