Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanocoating could eliminate foggy windows and lenses

30.08.2005


Foggy windows and lenses are a nuisance, and in the case of automobile windows, can pose a driving hazard. Now, a group of scientists at the Massachusetts Institute of Technology (MIT) may have found a permanent solution to the problem. The team has developed a unique polymer coating — made of silica nanoparticles — that they say can create surfaces that never fog.

The transparent coating can be applied to eyeglasses, camera lenses, ski goggles … even bathroom mirrors, they say. The new coating was described today at the 230th national meeting of the American Chemical Society, the world’s largest scientific society.

Researchers have been developing anti-fog technology for years, but each approach has its drawbacks. Some stores carry special anti-fog sprays that help reduce fogging on the inside of car windows, but the sprays must be constantly reapplied to remain effective. Glass containing titanium dioxide also shows promise for reduced fogging, but the method only works in the presence of ultraviolet (UV) light, researchers say.



"Our coatings have the potential to provide the first permanent solution to the fogging problem," says study leader Michael Rubner, Ph.D., a materials science researcher at MIT in Cambridge, Mass. "They remain stable over long periods, don’t require light to be activated and can be applied to virtually any surface." Coated glass appears clearer and allows more light to pass through than untreated glass while maintaining the same smooth texture, he says.

The coatings consist of alternating layers of silica nanoparticles, which are basically tiny particles of glass, and a polymer called polyallylamine hydrochloride, both of which are relatively cheap to manufacture, Rubner says. He has applied for a patent on the manufacturing process and says that the coating could be available in consumer products in two to five years. The military and at least two major car manufacturers have already expressed interest in using the technology, he says.

When fogging occurs, thousands of tiny water droplets condense on glass and other surfaces. The droplets scatter light in random patterns, causing the surfaces to become translucent or foggy. This often occurs when a cold surface suddenly comes into contact with warm, moist air.

The new coating prevents this process from occurring, primarily through its super-hydrophilic, or water-loving, nature, Rubner says. The nanoparticles in the coating strongly attract the water droplets and force them to form much smaller contact angles with the surface. As a result, the droplets flatten and merge into a uniform, transparent sheet rather than forming countless individual light-scattering spheres. "The coating basically causes water that hits the surfaces to develop a sustained sheeting effect, and that prevents fogging," Rubner says.

The same coatings also can be engineered to have superior anti-reflective properties that reduce glare and maximize the amount of light passing through, an effect that shows promise for improving materials used in greenhouses and solar cell panels, the researcher says. So far, the coating is more durable on glass than plastic surfaces, but Rubner and his associates are currently working on processes to optimize the effectiveness of the coating for all surfaces. More testing is needed, they say.

Funding for this study was provided by the Defense Advanced Research Projects Agency (DARPA) and the National Science Foundation (via the Materials Research Science and Engineering Centers, or MSREC).

The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with a multidisciplinary membership of more than 158,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.

Charmayne Marsh | EurekAlert!
Further information:
http://www.acs.org

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>