Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New magnetic techniques for microstructural characterisation of steels

24.06.2005


There is no doubt that steel is one of the materials that has largely contributed to the technological and economical development of the twentieth century. Its mechanical and magnetic properties are determined by its chemical composition and the microstructure obtained in its manufacturing process. Traditionally, it has been necessary to mechanically destroy the material in order to analyze its microstructure by means of a microscope, i.e. to get a small sample, to polish it and to attack it with chemical compounds. Nowadays, significant progress is being made to magnetically obtain information about steel’s microstructure. Besides, due to their non-destructive nature, magnetic techniques allow us to skip destructive mechanical techniques.

In this context, the aim of the doctoral thesis was to design an electronic system capable of determining microstructure variations in steels by means of magnetic non-destructive techniques. In the research a thorough analysis of the signals obtained by means of these techniques was made, which led to the definition of several useful parameters for the characterisation of the microstructure and mechanical properties of steels. These new techniques are based on the following principle: The steel is formed by microscopic regions called magnetic domains. When a magnetic field is applied to the material, these domains tend to grow and their walls find microstructural obstacles in their movement, such as dislocations, grain boundaries, or precipitates, which hinder their growth.

The thesis proposes a measurement system that provides several representative parameters of the movement of the magnetic domain walls. By means of this system the magnetic domains of the material themselves are used as internal sensors that record the characteristics of the microstructure. With this method it is possible to determine whether the material has a high or low dislocation density, the way in which dislocations arrange themselves, whether the material has grain boundaries or precipitates etc.



In order to evaluate the system’s sensitivity, measurements were made on low carbon steel samples with various microstructures. Its sensitivity to plastic deformation was analysed and parameters with enough resolution were obtained to quantitatively investigate the evolution of the microstructure during the thermal treatment applied to the cold rolled steels. Specifically, during the metallurgical processes of recovery and recrystallization. It is remarkable that by means of these techniques recovery processes, which are not detectable by means of traditional techniques such as hardness measurements or optical metallography, can be monitored.

This doctoral thesis opens up new technological possibilities in the field of magnetic non-destructive testing techniques applied to microstructural characterization of steels. Some significant results have been published in international journals, such as Acta Materialia and Materials Science Forum.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/tesi_sarrera.asp?hizk=I&Gelaxka=12
http://www.elhuyar.com

More articles from Materials Sciences:

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

nachricht 3D-Printing: Support structures to prevent vibrations in post-processing of thin-walled parts
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>