U-M team makes synthetic mother of pearl

It’s possible to grow thin films of mother of pearl in the laboratory that are even stronger than the super-strong material that naturally lines the inside of abalone shells. The trick is to add compounds normally found in insect shells and fungi cell walls to the recipe.


Materials scientists have long been fascinated by mother of pearl, also known as nacre, (NACK-er) because it is several times stronger than nylon, said Nicholas Kotov, associate professor at the U-M College of Engineering. Kotov’s team has now succeeded in making artificial nacre.

“We think this material will be tremendously important because different sensors, different electronic materials, space shuttles, airplanes and even cars require thin sheets of ultra-strong material,” said Kotov. “Additionally, we can engineer now, on a very accurate basis, the mechanical properties of the composites that we make.”

Seeking a way to strengthen the artificially made nacre, researchers substituted in a material called chitosan, which is a naturally occurring compound in insect shells and the cell walls of fungi.

The nanocomposite films are made by layering molecules on top of each other. Scientists dip a substrate into a solution of electrolytes, which carries electrical current, then into a clay solution. During this process, molecules bind to the substrate and begin to form layers. The dipping is done in a specific sequence to control different properties of the film as it is layered.

“As we build up the film, we can change its structure and therefore change the mechanical and other properties,” said Kotov.

Kotov and graduate students Paul Podsiadlo and Zhiyong Tang will discuss their research on the chitosan-based artificial nacre at the 229th national meeting of the American Chemical Society in San Diego on March 16.

Media Contact

Laura Bailey EurekAlert!

More Information:

http://www.umich.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors