Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Atomic Clues to Tougher Ceramics

10.12.2004


Advanced ceramics are wonderful materials – they withstand temperatures that would melt steel and resist most corrosive chemicals. If only they weren’t so brittle. Poor resistance to fracture damage has been the major drawback to the widespread use of advanced ceramics as structural materials. Help, however, may be on the way.



A collaboration of scientists led by researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has uncovered clues at the atomic level that could lead to a new generation of much tougher advanced ceramics to be used in applications like gas turbine engines.

Working with the unique facilities at Berkeley Lab’s National Center for Electron Microscopy (NCEM), the collaboration has produced atomic-resolution images of silicon nitride ceramics that were sintered with oxides of rare earth elements to toughen them up and prevent cracks from spreading. These images revealed, for the first time, the exact location of each rare-earth atom in the final material and how their presence affected its toughness.


"Our findings are a prime factor in understanding the origin of the mechanical properties in advanced ceramics and should make it possible to do the precise tailoring in the future that will critically improve the performances of these materials over a wide range of applications," says Robert Ritchie, a materials scientist who holds a joint appointment with Berkeley Lab’s Materials Sciences Division and the University of California at Berkeley’s Department of Materials Science and Engineering.

Ritchie and Alexander Ziegler, a member of Ritchie’s research group, were the principal authors of a paper by the collaboration which appears in the December 3 issue of the journal Science. The other co-authors were Christian Kisielowski and Nigel Browning of Berkeley Lab, Juan Idrobo of UC Davis, and Michael Cinibulk of the Air Force Research Laboratory in Ohio.

Ceramics are probably the oldest construction materials known, their use dating back thousands of years, when they were made from wet clay and baked at high temperatures until hard. Today’s advanced ceramics are made from powders of complex chemical compounds and their production requires careful control at every stage of the process.

Much attention is currently being focused on silicon nitride advanced ceramics, which are considered to be leading candidates as structural materials for future gas turbine engines. These engines, which are projected for use in electrical power plants, among other applications, will burn fuel at temperatures of around 1,200 degrees Celsius (2,192 degrees Fahrenheit), well beyond the tolerance of metals, even nickel-base super-alloys. Running at such high temperatures, the advanced gas turbines are expected to achieve a much higher thermal-to-electricity efficiency than today’s steam-driven electrical power plants, while emitting far less greenhouse gases. For this to happen, however, the brittleness problem of the silicon nitride ceramics must be solved.

Says Ziegler, "To enhance the toughness of a silicon nitride ceramic, it is often necessary to engineer a thin (nanoscale) film in the ceramic’s grain boundaries, which cracks when the ceramic begins to fracture. This promotes the formation of grain bridges which span across the crack, making it more difficult for the crack to propagate."

Understanding the nature and properties of these nano-sized intergranular films is crucial to enhancing ceramic toughness, according to Ritchie and Ziegler. However, critical information about the chemical composition, atomic structure and bonding characteristics of such films has long been missing. "The problem was the nanometer dimensions of the intergranular films," Ziegler says. "To gain information on the local atomic structure and bonding characteristics requires characterization at Ångstrøm (single-atom) to sub-Ångstrøm scales. Until recently, no microscopes or chemical analysis probes have been able to resolve such information at these length scales."

NCEM, however, houses a Scanning Transmission Electron Microscope (STEM) which is optimized for materials applications that require the highest resolutions for both imaging and spectroscopy. With the help of NCEM staff members Kisielowski and Browning, Ritchie, Ziegler and the collaboration used this microscope, in combination with an imaging technique called "high-angle annular dark-field STEM," and a chemical analysis technique, called electron-energy-loss-spectroscopy (EELS), to examine a silicon nitride ceramic doped with several different rare-earth elements. They specifically looked at how the atomic bonding configuration of the intergranular phase changed with a change in the rare earth sintering additive.

"We were able to determine the exact location of each rare-earth atom and to see how these atoms specifically bonded to the interface between the intergranular phase and the matrix grains of the ceramic," Ritchie says. "We saw that each rare-earth element attaches to the interface differently, depending on its atomic size, electronic configuration, and the presence of oxygen atoms along the interface. This information can be related to the fracture toughness of the ceramic, which means we should be able to atomistically tailor the grain boundaries in future ceramics to give optimum mechanical properties."

The collaboration says that its results with the silicon nitride ceramic and the rare earth glassy films should be applicable to other types of advanced ceramics as well.

Says Ritchie, "It’s interesting, but intergranular glassy films used to be thought of as an undesirable feature in ceramics, much like inclusions in steels. We now realize they are the key feature that promotes ceramic toughness."

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Materials Sciences:

nachricht Breakthrough in nanoresearch - Quantum chains in graphene nanoribbons
09.08.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht UNH Researchers find seed coats could lead to strong, tough, yet flexible materials
08.08.2018 | University of New Hampshire

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

NRL's sun imaging telescopes fly on NASA Parker Solar Probe

13.08.2018 | Physics and Astronomy

UT-ORNL team makes first particle accelerator beam measurement in six dimensions

13.08.2018 | Physics and Astronomy

ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres

13.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>