Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping to improve early breast cancer Detection Rates

03.11.2004


Early correct diagnosis of breast cancer can mean the difference between life and death for the significant proportion of western women affected by the disease. Small clumps of calcium salts - microcalcifications - are often the earliest signs of breast cancer, and appear in 25% of mammograms. Oxford researchers have developed a new method to identify more reliably these clusters.



Calcifications appear as bright spots or clusters of spots; small clustered whorled calcifications are those most likely to indicate malignancy. The existence of microcalcifications in a mammogram is a clear warning of abnormality. Any program to assist a radiologist detect microcalcifications must miss few, if any, clinically important clusters, but equally must not signal too many false positives. With the increasingly vast number of mammograms to be analysed from screening programmes, automated computer-aided detection methods are a necessity.

Although several methods have been proposed for detecting microcalcification clusters, they have all been limited by faults such as the return of too many false positives. Oxford researchers, however, have recently developed a foveal segmentation method, based on differential local contrast in the image that will help to significantly reduce the risk of both false negatives and false positives being made in the identification of calcifications in mammograms.


If you are interested in finding out more about this technique or if you have a commercial interest in helping to develop the technology further then contact kim.bruty@isis.ox.ac.uk

Kim Bruty | alfa
Further information:
http://www.isis-innovation.com

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>