Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercool! Model unscrambles complex crystallization puzzle

31.08.2004



To the wonderment---and the befuddlement---of scientists, the patterns that form as plastics, metals and many other materials crystallize can vary incredibly, ranging from sea-urchin-like spheres to elaborate tree-like branches.

Now, Hungarian and National Institute of Standards and Technology scientists report in the September issue of Nature Materials* that they have developed a way to predict the polycrystalline microstructures that will form as complex liquid mixtures cool and solidify. Ultimately, the team’s new simulation tool could help manufacturers of everything from plastic bags to airplane wings to design new products with improved strength, durability and other properties.

Images generated with the team’s mathematical model match up almost feature for feature with the seemingly random crystal patterns formed in experiments as temperatures or other processing variables are modified. The model accurately predicts how both impurities (or additives) and process differences affect the sizes, shapes and orientations of crystals that form during the so-called supercooling process.



Whether initiated by "dirt" or by processing conditions, the resulting patterns can be strikingly similar. This "duality in the growth process," notes NIST’s James Warren, may help explain why polycrystalline growth patterns are so prevalent in polymers and other materials derived from complex mixtures.

Findings based on the model indicate that instabilities along the boundary between liquid and solid areas during solidification effectively clash with the otherwise orderly process of crystallization. Tiny crystals-in-the-making move and position themselves along the growth front, assuming an orientation peculiar to the energy conditions at their location. Varying local conditions produce crystals in seemingly disordered arrays, accounting for the rich diversity of microstructural patterns.

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
15.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

New findings help to better calculate the oceans’ contribution to climate regulation

15.11.2018 | Life Sciences

Automated adhesive film placement and stringer integration for aircraft manufacture

15.11.2018 | Materials Sciences

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>