Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laboratory advances the art and science of aerogels

27.08.2004


University of California scientists working at Los Alamos National Laboratory have recently demonstrated a novel method for chemically modifying and enhancing silica-based aerogels without sacrificing the aerogels unique properties. Aerogels are low-density, transparent materials used in a wide range of applications, including thermal insulation, porous separation media, inertial confinement fusion experiments and cometary dust capture agents.



Made of silica, one of the Earth’s most abundant materials, aerogels are as much as 99 percent air, giving them not only the highest thermal insulation value and highest surface area, but also the lowest acoustic conductivity and density of all known solid materials. The aerogels’ extraordinary thermal insulation ability makes them capable of withstanding temperatures in excess of a thousand of degrees Fahrenheit. Because they are composed mostly of air, there is little solid content available for maintaining the structural integrity of the aerogel, making them brittle.

In research reported today at the 228th national meeting of the American Chemical Society, Laboratory scientist Kimberly DeFriend describes a process for modifying silica aerogels with silicon and transition metal compounds using chemical vapor techniques to create a silicon multilayer or a mixed-metal oxide that enhance the current physical properties of aerogels for more demanding applications. With the addition of a silicon monolayer, an aerogel’s strength can be increased four-fold.


Aerogels are synthesized at Los Alamos using sol-gel processing and super-critically dried with either carbon dioxide or a solvent. This sol-gel processing method allows the gel to be formed in the shape of its mold, making it possible to create a variety of shapes. The introduction of silicon multilayers or transition metal compounds allows the aerogels to retain their most valuable porosity and density characteristics while enhancing weaker characteristics like mechanical strength.

Los Alamos has recently begun to expand and advance its ability to synthesize and manufacture the aerogels. This improved capability will allow Laboratory scientists to not only more closely study and improve on the quality of the aerogels, but also help to better meet the Laboratory’s inertial confinement fusion and high-energy-density physics aerogel target needs.

In addition to DeFriend, the Los Alamos aerogel team includes Douglas Loy, Arthur Nobile, Jr. Kenneth Salazar, James Small, Jonathan Stoddard and Kennard Wilson, Jr., all with the Laboratory’s Materials Science and Technology Division.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear deterrent, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to defense, energy, environment, infrastructure, health and national security concerns.

Todd Hanson | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>