Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metal Fibers Baked To Make Filters

09.07.2004


In automotive catalytic converters and industrial exhaust gas filters, porous materials play a crucial role: they filter and break down hot waste gases. It is now possible to process virtually all metal alloys into fibers which can be used to make open-pored sintered materials.

The requirements to be met by a coffee filter are simple: it must retain the powder and not be decomposed by the hot water. The conditions for dealing with exhaust gases in industrial processes are much tougher: temperatures of several hundred degrees and aggressive media are no rarity. In such conditions, manufacturers need different filter materials than cellulose or textiles in order to remove particles and pollutants. A solution is provided by filters made of metal, as produced by researchers at the Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research IFAM. The filters are made of small metallic fibers - a few millimeters long and just a tenth of a millimeter thick. Depending on the application, they can be baked to make semis such as rings, tubes or disks.

In conventional fiber manufacture, however, the metal must be formable. “High-temperature alloys containing lots of aluminum are too brittle for this purpose,” explains Olaf Andersen from the institute’s Powder Metallurgy and Composite Materials unit in Dresden. “We can make fibers from virtually any metal or alloy. This allows us to produce particularly heat-resistant or catalytically active filters tailor-made for specific applications.” The extremely wide range of materials is made possible by a new process applied by Andersen and his colleagues. Formability is not a requirement because the fibers are drawn directly from molten metal. A cooled roll with a fine profile rotates over the melt. The raised areas of the roll’s profile determine the length and width of the resulting fibers. Where they touch the liquid metal’s surface, it cools down, solidifies, contracts and finally disengages from the roll as a thin fiber. In a second step the scientists pack the finished fibers in a mold, cover it with a plate and heat the fibers until they are close to melting point. During sintering the cover plate drops down gradually until it reaches a spacer. The remaining volume and the fiber length determine the size of the cavities in the finished filter.



The porous metal filters are used, for example, to protect electric motors. If the motor catches fire or explodes, the hot gases are expelled through the filter. They cool down rapidly on the large inner metal surface, which reduces risks and further damages. In an EU project, the IFAM researchers are developing a melting furnace filter in cooperation with the French company LECES based near Metz. As the exhaust gases from the furnaces contain dioxins, the filters need to be catalytically active in order to effectively destroy these toxic substances.

Johannes Ehrlenspiel | alfa
Further information:
http://www.fraunhofer.de

More articles from Materials Sciences:

nachricht Carnegie Mellon researchers create soft, flexible materials with enhanced properties
24.05.2019 | Carnegie Mellon University

nachricht Plumbene, graphene's latest cousin, realized on the 'nano water cube'
23.05.2019 | Nagoya University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>