Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metal Fibers Baked To Make Filters

09.07.2004


In automotive catalytic converters and industrial exhaust gas filters, porous materials play a crucial role: they filter and break down hot waste gases. It is now possible to process virtually all metal alloys into fibers which can be used to make open-pored sintered materials.

The requirements to be met by a coffee filter are simple: it must retain the powder and not be decomposed by the hot water. The conditions for dealing with exhaust gases in industrial processes are much tougher: temperatures of several hundred degrees and aggressive media are no rarity. In such conditions, manufacturers need different filter materials than cellulose or textiles in order to remove particles and pollutants. A solution is provided by filters made of metal, as produced by researchers at the Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research IFAM. The filters are made of small metallic fibers - a few millimeters long and just a tenth of a millimeter thick. Depending on the application, they can be baked to make semis such as rings, tubes or disks.

In conventional fiber manufacture, however, the metal must be formable. “High-temperature alloys containing lots of aluminum are too brittle for this purpose,” explains Olaf Andersen from the institute’s Powder Metallurgy and Composite Materials unit in Dresden. “We can make fibers from virtually any metal or alloy. This allows us to produce particularly heat-resistant or catalytically active filters tailor-made for specific applications.” The extremely wide range of materials is made possible by a new process applied by Andersen and his colleagues. Formability is not a requirement because the fibers are drawn directly from molten metal. A cooled roll with a fine profile rotates over the melt. The raised areas of the roll’s profile determine the length and width of the resulting fibers. Where they touch the liquid metal’s surface, it cools down, solidifies, contracts and finally disengages from the roll as a thin fiber. In a second step the scientists pack the finished fibers in a mold, cover it with a plate and heat the fibers until they are close to melting point. During sintering the cover plate drops down gradually until it reaches a spacer. The remaining volume and the fiber length determine the size of the cavities in the finished filter.



The porous metal filters are used, for example, to protect electric motors. If the motor catches fire or explodes, the hot gases are expelled through the filter. They cool down rapidly on the large inner metal surface, which reduces risks and further damages. In an EU project, the IFAM researchers are developing a melting furnace filter in cooperation with the French company LECES based near Metz. As the exhaust gases from the furnaces contain dioxins, the filters need to be catalytically active in order to effectively destroy these toxic substances.

Johannes Ehrlenspiel | alfa
Further information:
http://www.fraunhofer.de

More articles from Materials Sciences:

nachricht High-temperature electronics? That's hot
07.12.2018 | Purdue University

nachricht Researchers develop method to transfer entire 2D circuits to any smooth surface
07.12.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>