Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students fashion space suits for Mars

24.05.2004


As if getting to Mars wasn’t hard enough, astronauts also have to worry about what to wear when they arrive. Their concerns are not fashion pundits but exposure to micrometeor sandstorms, radiation, and a hyper-cold climate.



However, three undergraduate students at the University of Alberta - Jennifer Marcy, Ann Shalanski, and Matthew Yarmuch - addressed the problem in Dr. Barry Patchett’s Materials Design 443 class and have published their findings in the Journal of Materials Engineering and Performance. Students in the class are asked to take something that already exists and improve its performance and design by using new materials.

Patchett said that the space suit for Mars is the first design created in the class that he felt could stand up to the peer review process required for publication. "It is the best project I’ve seen in over a decade," he said.


"I don’t know why we decided to design a space suit," Yarmuch said. "Nothing like it had ever been designed in the class before, so I guess that was the main attraction."

The three materials engineering students began by studying, layer by layer, the space suits NASA developed for trips to the moon. Suits made for Mars, however, will require much more thought than the ones produced for the moon, Yarmuch said. "Mars has nothing for atmosphere. There’s some carbon dioxide, but that’s about it for gases."

Unlike Earth, Mars does not have a magnetosphere to protect it from radiation and meteors and micrometeors, and astronauts on Mars will also have to deal with average temperatures of –60C. In creating their design, the students tried to balance these concerns with the need to create a suit that the astronauts could move about in as they explored.

"The gravitational force on Mars is about one-third of that on Earth, so if you built the suit with lead to protect the astronauts from the radiation, it would still end up weighing a few hundred kilograms, and the poor guys wouldn’t be able to move," Yarmuch said.

The suit includes ball bearings and bearing and compression rings, and one of the 12 layers of material the students incorporated into their design is Demron, a new polymeric created by a company called Radiation Shield Technologies (RST). As the students completed their theoretical design using computer-aided design software, they did not worry about costs, which "would have been very high" if they produced an actual suit, Yarmuch said.

"We asked RST for an estimate on the cost of Demron, but because it’s such a new product and we were only asking them for a speculative price, they didn’t even want to give us a number," Yarmuch said. "Ultimately, we designed [the suit] without concern for cost--we went cutting edge on everything."

Two of the reviewers on the editorial board for the Journal of Materials Engineering and Performance are from NASA, Patchett noted, so perhaps one day parts of the U of A students’ space suit design will be incorporated into a suit built by NASA.

"That would be very cool," Yarmuch added. "The development of a real suit to be used on a real mission to Mars is probably still a couple of decades away at least, but I think our research will help point future researchers in the right direction."


Dr. Barry Patchett can be reached at 780-492-2604 or barry.patchett@ualberta.ca

Ryan Smith | EurekAlert!
Further information:
http://www.ualberta.ca/

More articles from Materials Sciences:

nachricht High-efficiency thermoelectric materials: New insights into tin selenide
25.04.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht Scientists develop low-cost energy-efficient materials
24.04.2019 | National University of Science and Technology MISIS

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>