Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemist’s technique enables creation of novel carbon nanoparticles

11.05.2004


A technique developed by Karen Wooley has proved vital in the creation of novel carbon nanoparticles with colleagues at Carnegie Mellon University.


Wooley technique ’linchpin’ to success

Using a technique pioneered by Washington University in St. Louis chemist Karen Wooley, Ph.D., scientists have developed a novel way to make discrete carbon nanoparticles for electrical components used in industry and research.

The method uses polyacrylonitrile (PAN) as a nanoparticle precursor and is relatively low cost, simple and potentially scalable to commercial production levels. It provides significant advantages over existing technologies to make well-defined nanostructured carbons. Using the method, PAN copolymers serving as carbon precursors can be deposited as thin films on surfaces (for example, silicon wafers), where they can be patterned and further processed using techniques currently employed to fabricate microelectronic devices. Such a seamless manufacturing process is important to generate integrated devices and would be difficult to achieve with other methods currently used to synthesize nanostructured carbons, said Tomasz Kowalewski, Ph.D., assistant professor of chemistry at the Mellon College of Science and principal investigator on this research.



The research was presented March 28, 2004, at the 227th annual meeting of the American Chemical Society in Anaheim, Calif. The research findings have been accepted for publication in Angewandte Chemie, International Edition. The work was funded by the National Science Foundation.

The new approach is based on a method the Carnegie Mellon group previously developed to form nanostructured carbons by using block copolymers in which PAN is linked to other polymers with which it normally does not mix. In the current method, PAN, a water-hating compound, is copolymerized with polyacrylic acid, a water-loving polymer. In water-containing solutions, PAN-polyacrylic acid copolymers self assemble into nanoscale droplets, or micelles. Each micelle has a water-insoluble PAN core and a water-soluble polyacrylic acid outer coat that forms an outer shell.

The linchpin to make carbon nanoparticles from micelles is a shell-crosslinking technique that Wooley developed with Ph.D. student K. Bruce Thurmond II — now a research scientist at Access Pharmaceuticals, Dallas, Tex. — in the late 1990s at Washington University. Whereas polymer micelles are dynamic assemblies that can be reorganized or destroyed, the shell crosslinking technique allowed the Carnegie Mellon researchers to contain the PAN within the polyacrylic acid to maintain discrete nano-objects during manipulation of the materials. The scientists then deposited thin and ultra-thin films of these nanoparticles on various substrates. The Carnegie Mellon team heated the nanoparticles to high temperatures in a process called pyrolysis, decomposing the polyacrylic acid shell scaffolding and converting the chemically stabilized PAN domains into arrays of discrete carbon nanostructures.

"The preparation, manipulation and study of these highly interesting, discrete carbon nanoparticles were facilitated by an interdisciplinary collaboration that has involved the open sharing of knowledge, ideas, resources and researchers between several laboratories located at Washington University and Carnegie Mellon University," said Wooley. "This kind of cross-institutional teamwork provides for enhanced student experiences and allows for research accomplishments that would not ordinarily be possible, activities which have been supported in large part by the National Science Foundation."

"This work really illustrates a particularly attractive strategy in the evolution of nanotechnology," said Kowalewski, principal investigator on this research and a postdoctoral researcher at Washington University in the late 1990s, and long-time collaborator with Wooley. "Our well-defined carbon nanoparticles should find a wide range of applications, especially in energy storage/conversion devices and in display technologies."

The Carnegie Mellon group is currently working on using carbon nanoparticles as active materials in field emitter arrays for flat panel screen displays. This technology to produce carbon nanostructures also could be adapted to produce solar panels that convert sunlight into electrical energy. Other applications include the development of carbon-based nanosensors or high-surface area electrodes for use in biotechnology or medicine.

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/news/page/normal/848.html

More articles from Materials Sciences:

nachricht A materials scientist’s dream come true
21.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>