Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemist’s technique enables creation of novel carbon nanoparticles

11.05.2004


A technique developed by Karen Wooley has proved vital in the creation of novel carbon nanoparticles with colleagues at Carnegie Mellon University.


Wooley technique ’linchpin’ to success

Using a technique pioneered by Washington University in St. Louis chemist Karen Wooley, Ph.D., scientists have developed a novel way to make discrete carbon nanoparticles for electrical components used in industry and research.

The method uses polyacrylonitrile (PAN) as a nanoparticle precursor and is relatively low cost, simple and potentially scalable to commercial production levels. It provides significant advantages over existing technologies to make well-defined nanostructured carbons. Using the method, PAN copolymers serving as carbon precursors can be deposited as thin films on surfaces (for example, silicon wafers), where they can be patterned and further processed using techniques currently employed to fabricate microelectronic devices. Such a seamless manufacturing process is important to generate integrated devices and would be difficult to achieve with other methods currently used to synthesize nanostructured carbons, said Tomasz Kowalewski, Ph.D., assistant professor of chemistry at the Mellon College of Science and principal investigator on this research.



The research was presented March 28, 2004, at the 227th annual meeting of the American Chemical Society in Anaheim, Calif. The research findings have been accepted for publication in Angewandte Chemie, International Edition. The work was funded by the National Science Foundation.

The new approach is based on a method the Carnegie Mellon group previously developed to form nanostructured carbons by using block copolymers in which PAN is linked to other polymers with which it normally does not mix. In the current method, PAN, a water-hating compound, is copolymerized with polyacrylic acid, a water-loving polymer. In water-containing solutions, PAN-polyacrylic acid copolymers self assemble into nanoscale droplets, or micelles. Each micelle has a water-insoluble PAN core and a water-soluble polyacrylic acid outer coat that forms an outer shell.

The linchpin to make carbon nanoparticles from micelles is a shell-crosslinking technique that Wooley developed with Ph.D. student K. Bruce Thurmond II — now a research scientist at Access Pharmaceuticals, Dallas, Tex. — in the late 1990s at Washington University. Whereas polymer micelles are dynamic assemblies that can be reorganized or destroyed, the shell crosslinking technique allowed the Carnegie Mellon researchers to contain the PAN within the polyacrylic acid to maintain discrete nano-objects during manipulation of the materials. The scientists then deposited thin and ultra-thin films of these nanoparticles on various substrates. The Carnegie Mellon team heated the nanoparticles to high temperatures in a process called pyrolysis, decomposing the polyacrylic acid shell scaffolding and converting the chemically stabilized PAN domains into arrays of discrete carbon nanostructures.

"The preparation, manipulation and study of these highly interesting, discrete carbon nanoparticles were facilitated by an interdisciplinary collaboration that has involved the open sharing of knowledge, ideas, resources and researchers between several laboratories located at Washington University and Carnegie Mellon University," said Wooley. "This kind of cross-institutional teamwork provides for enhanced student experiences and allows for research accomplishments that would not ordinarily be possible, activities which have been supported in large part by the National Science Foundation."

"This work really illustrates a particularly attractive strategy in the evolution of nanotechnology," said Kowalewski, principal investigator on this research and a postdoctoral researcher at Washington University in the late 1990s, and long-time collaborator with Wooley. "Our well-defined carbon nanoparticles should find a wide range of applications, especially in energy storage/conversion devices and in display technologies."

The Carnegie Mellon group is currently working on using carbon nanoparticles as active materials in field emitter arrays for flat panel screen displays. This technology to produce carbon nanostructures also could be adapted to produce solar panels that convert sunlight into electrical energy. Other applications include the development of carbon-based nanosensors or high-surface area electrodes for use in biotechnology or medicine.

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/news/page/normal/848.html

More articles from Materials Sciences:

nachricht Synthesis of helical ladder polymers
21.05.2019 | Kanazawa University

nachricht Ultra-thin superlattices from gold nanoparticles for nanophotonics
21.05.2019 | Heinrich-Heine University Duesseldorf

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>