Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New high-tech concrete is lighter, stronger & green

10.05.2004


Australian scientists have developed a breakthrough low-cost, lightweight, concrete technology that is set to lower costs and speed up construction projects from residential homes to high-rise buildings.

HySSIL (High-Strength, Structural, Insulative, Lightweight) panels are manufactured using a new low energy, process developed by CSIRO Novel Materials & Processes. Dr Swee Liang Mak, who leads the HySSIL development team at CSIRO says, ’HySSIL is a revolutionary aerated cementitious (cement-based) product that is as strong as normal concrete but is only half as heavy. It provides up to five times the thermal insulation of concrete and is also impact and fire resistant’. ’HySSIL wall panels are also expected to offer significant cost advantages over existing products’, says Dr Mak.

’Significant savings are achieved because CSIRO HySSIL technology uses readily available raw materials in smaller quantities and the-low cost and low-energy technology developed by CSIRO. ’Unlike certain processes used to manufacture aerated products, HySSIL production does not require expensive autoclaves (curing equipment)’. Dr Mak says, ’This means there are significant savings on the cost of start-up manufacturing plant for HySSIL’.



HySSIL also offers the extra bonus of being easily recyclable.

Dr Mak adds, ’The use of lightweight building materials such as HySSIL will contribute to a reduction in greenhouse gas emissions, by increasing the energy efficiency of buildings and reducing the energy used during transportation and construction. For example, HySSIL wall panels are light enough to assemble on site without the need for heavy lifting equipment.’

Dr Mak describes HySSIL as a platform technology for the development of a range of new products, including both structural and non-structural elements such as walls, roof tiles, floor systems, decks and noise barrier panels.

HySSIL panels are expected to be a competitive alternative to bricks, blocks, prefabricated wall panels, precast wall panels, aerated lightweight blocks and similar product currently used in the building and construction industry.

HySSIL technology was developed by CSIRO in conjunction with CMR Energy Technologies (CMRET), a wholly owned subsidiary of CMR Consultants (Australia) Pty Ltd, established to undertake research, development and commercialisation of new energy-related technologies.

The applied research phase of HySSIL was supported by an AusIndustry R&D START grant.

CMRET has established a company called HySSIL Pty Ltd with Applied Construction Technologies (ACT), a researcher, developer and marketer of advanced building, construction and engineering technologies in Australia and the Asia Pacific region.

HySSIL Pty Ltd is licensed by CSIRO to exploit the HySSIL technology worldwide for building applications.

Colin Knowles, a director of HySSIL Pty Ltd, says, ’We are focussing initially on the massive US$125 billion per annum global wall market. Our strategy is to commercialise the technology through regional sub-licences with manufacturers’.

HySSIL Pty Ltd is in active discussions with manufacturers in Australia, South East Asia, the USA and China.

For Further Information Contact:

Robert Peile, +61 3 9252 6587
CSIRO Industry Manager
Email: Robert.Peile@csiro.au

Ken Anderson, +61 3 9254 2052, mobile: 0414 457 214
Manager Marketing Communications
Email: Ken.Anderson@csiro.au

Roy Yong, Colin Knowles,+ 61 3 9654 6799
Directors
HySSIL Pty Ltd
Email: royyong@hyssil.com , colinknowles@hyssil.com

Rosie Schmedding | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=Prconcrete2

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>