Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser technique used to build micro-polymeric structure on a human hair, without harming it

04.05.2004


First demonstration that ’MAP’ laser technique can be used non-destructively on biomaterials; potential applications range from medical research to fiber optics



Researchers in the laboratory of Boston College Chemistry Professor John T. Fourkas have demonstrated the fabrication of microscopic polymeric structures on top of a human hair.

Fourkas, in collaboration with Boston College Physics Professor Michael J. Naughton and Professors Malvin C. Teich and Bahaa E. A. Saleh of the Department of Electrical and Computer Engineering at Boston University, used a technique called multiphoton-absorption photopolymerization (MAP), in which a polymer can be deposited at the focal point of a laser beam; scanning of the laser beam in a desired pattern then allows for the formation of intricate, three-dimensional patterns. This technique, also being explored by a handful of other groups worldwide, makes it possible to create features that are 1000 times smaller than the diameter of a human hair.


These new results show for the first time that MAP can be used to fabricate structures nondestructively on biomaterials, and point the way towards applications of MAP in the creation of miniature biodevices, which could include micromanipulators for cells or even individual protein or DNA molecules.

The findings will be published in the June 1 issue of Journal of Applied Physics.

The original purpose of the study was to demonstrate that intricate and resilient structures could be created with MAP using inexpensive and readily-available materials.

In order to demonstrate the size of the features that could be created, the researchers fabricated structures near a human hair, and in the course of these experiments they discovered that it was also possible to fabricate structures on the hair itself.

"We built the structure on top of the hair with a material that is akin to plexiglass," said Fourkas. "One of the really exciting and unexpected things about this is that we found that we could make this structure on the hair without harming it in any way. This suggests that we could accomplish the same with other biological materials. One could imagine, for instance, building devices directly on skin, blood vessels, and eventually even a living cell. While this idea is currently in the realm of science fiction, our results represent an important step in that direction.

"On the level of individual cells, one can imagine making devices that can tether cells to a surface or to each other, or that allow the delivery of particular chemicals to the cell, or that monitor processes within the cell," explained Fourkas. "On a larger scale, if the same sort of structures can be constructed from biocompatible materials one can imagine applications in drug delivery and medical monitoring, among other areas."

Three-dimensional structures created with this technique also have the potential to be used in other miniature devices, such as optical communications hardware: fiber optics and the hardware that is used to interface them with electronics.

"While there are applications of the technique we used in the optical communications area that are being pursued by us and by others, writing a structure on a hair does not have direct bearing on optical communications," Fourkas said. "On the other hand, we can and have done exactly the same sort of thing on optical fibers that are of comparable size, and this does have direct bearing."

John Fourkas | EurekAlert!
Further information:
http://www.bc.edu/

More articles from Materials Sciences:

nachricht Carbon fiber can store energy in the body of a vehicle
18.10.2018 | Chalmers University of Technology

nachricht Goodbye, silicon? On the way to new electronic materials with metal-organic networks
17.10.2018 | Max-Planck-Institut für Polymerforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>