Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wet scans

20.04.2004


The "scanning electron microscope" (SEM) has been a basic research tool for fifty years, and for those fifty years, scientists have been looking for better ways to observe biological samples under its beam. The problem is that the viewing chamber of the SEM must contain a vacuum (in which liquid water in tissues "boils" away). To overcome this difficulty, scientists have had to resort to all sorts of complicated procedures, including coating the specimens with an ultra-fine layer of gold, quick-freezing samples in special deep-freezes, or treating them with drying solvents.



Now, scientists at the Weizmann Institute of Science have found a way to view samples of biological materials in their natural, "wet" state. Their secret lies in the production of a very thin but tough polymer capsule to enclose the sample, allowing it to withstand the force of the vacuum. Says Dr. Ory Zik, who worked on the capsule with Professor Elisha Moses of the Physics of Complex Systems Department: "The material for the capsule is a result of advances in the area of semiconductors. We came across it while researching ways to apply automation techniques used in the semiconductor industry to the life sciences’ scanning electron microscopes."

The capsule’s polymer is unique in that it is allows the electrons with which a SEM works to pass through unobstructed, giving scientists a clear view of what lies within, without the use of tricky, tissue-distorting procedures. Researchers hope the new method will advance the studies of biological materials, such as the lipids that make up fat, which are easily destroyed by the old sample preparation methods.


Since the discovery was made, Zik, in cooperation with Yeda, the business arm of the Weizmann Institute, has founded a company, called QuantomiX, based on this technology. The findings of the team were published in the March 9 Proceedings of the National Academy of Sciences, USA (PNAS).


Prof. Elisha Moses’s research is supported by the Clore Center for Biological Physics and the Rosa and Emilio Segre Research Award.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Materials Sciences:

nachricht Topological material switched off and on for the first time
11.12.2018 | ARC Centre of Excellence in Future Low-Energy Electronics Technologies

nachricht Proteins imaged in graphene liquid cell have higher radiation tolerance
10.12.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>