Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wrapped in polymers

06.04.2004


Food packs, containers, toothpaste tubes, wheels, glue, paints ... they are all made of polymers. The world of polymers is infinite and, so, there is a great variety. The majority have been designed for a specific application; given that at times the application might be for a food container and, at others, for the superstructure of a vehicle. The specifications needed in either case are quite different.



Polymers are gigantic molecules, but they are synthesised from small compounds: monomers. In fact, the name of the polymer normally indicates from which monomer it has been synthesised. For example, polystyrene (PS) is obtained from styrene, polyvinyl chloride (PVC) from vinyl chloride, etc.

But not polystyrenes are the same. Depending on the length of the monomer chain or on the mode of synthesis or processing, the final result can vary. Thus, before analysing any polymer, it is necessary to characterise it thoroughly.


Transport properties

At the Chemistry Faculty of the Donostia campus of the University of the Basque Country, the transport properties of polymers, amongst other properties, are being researched. That is, how small molecules (water vapour, oxygen, CO2 and so on) are transported in a polymer.

For example, transparent film to protect foodstuffs is made of polymers. It is essential to know the following: what substances are absorbed by this film, at what rate they are absorbed, at what point does the film become saturated, what is the manner in which these substances are transported through the polymer and, once penetrated the film, how many get to the other side. Apart from these characteristics the permeability of the polymer is also analysed.

In this way, case by case, the transport properties of each polymer is analysed.

Biodegradable polymers

All these theoretical and experimental analyses have one aim: to understand the transport properties of polymers and get to know them better in order to enhance these polymer characteristics. That is, industry will always look for the ideal polymer for its needs, needless to say taking into account price and ease of industrial handling of the polymer.

But from here on in, this search will have to include a feature which, up to now, has not been taken into account: the capacity for degradation. This is due to the fact that polymers degrade very slowly and, on many occasions during this process, compounds are produced which are a danger to nature. This is why, in the coming years legislation will be introduced to ensure that polymers are biodegradable, at least to a certain percentage. One of the objectives of the researchers at the Donostia campus is to start investigating polymers with these characteristics.

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=444&hizk=I
http://www.ehu.es

More articles from Materials Sciences:

nachricht From foam to bone: Plant cellulose can pave the way for healthy bone implants
19.03.2019 | University of British Columbia

nachricht Additive printing processes for flexible touchscreens: increased materials and cost efficiency
19.03.2019 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>