Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Researchers Introduce a New Nanotube-Laced Gel, Create New Means of Aligning Nanotubes

02.03.2004


Researchers at the University of Pennsylvania have devised a new method for aligning isolated single wall carbon nanotubes and, in the process, have created a new kind of material with liquid crystal-like properties, which they call nematic nanotube gels. The gels could potentially serve as sensors in complex fluids, where changes in local chemical environment, such as acidity or solvent quality, can lead to visible changes in the gel shape. The researchers describe their findings in the current issue of Physical Review Letters.



Single wall carbon nanotubes have astounded researchers with their remarkable strength and their ability to conduct heat and electricity. For many of their potential applications, however, these nanotubes work best when they are aligned parallel to one another, without forming aggregates or bundles. In solutions with low concentrations of single wall carbon nanotubes, the nanotubes are isotropic, or not oriented in a particular direction. If the concentration of the single wall carbon nanotubes is increased sufficiently, it becomes energetically favorable for the nanotubes to align. This is the nematic phase that many researchers have sought to create and utilize.

"Unfortunately, experience has shown that single wall carbon nanotubes tend to clump together or form three-dimensional networks in water at concentrations where theories otherwise predict they will form this nematic liquid crystal phase," said Arjun Yodh, senior author and a professor in Penn Department of Physics and Astronomy. "Our gels effectively increase the concentration of isolated single wall carbon nanotubes without allowing them to bundle up or form networks."


Yodh and his colleagues embedded isolated nanotubes coated by surfactant into a cross-linked polymer matrix, a gel. The volume of the gel is highly temperature dependent, and the researchers were able to compress it to a fraction of its original size by changing its temperature. The gel network prevented the close contact between parallel nanotubes that produces bundling, and its compression produced concentrations of isolated nanotubes that favor nematic alignment. The condensed gel thus creates concentrations of isolated, aligned nanotubes that cannot be achieved when they are suspended in water.

Like liquid crystals, the resulting nanotube gels exhibit beautiful defect patterns revealed by polarized light transmission through the sample that correspond to the particular nanotube alignments. The topology of the defects are, in turn, coupled to the mechanical strains present in the gel.

The researchers are now exploring applications for both the technique and the properties of the nematic nanotube gels.

"Certainly we expect the mechanical, electrical and perhaps thermal properties of the resulting composites to differ from their unaligned counterparts," said Mohammad Islam, a Penn postdoctoral fellow and co-author of the study. "It might be possible to use local influx of particular chemicals to cause mechanical deformations in the gel. Similarly, external fields could interact with the nanotubes, which in turn would interact and deform the background polymer network."

The research was funded by grants from the National Science Foundation and NASA.

Penn has filed patent applications on this technology and the patent rights have been licensed to NanoSelect Inc. Commercial inquiries may be directed to NanoSelect.

Other Penn scientists involved in this study include Ahmed Alsayed, Zvonimir Dogic, Jian Zhang and Tom C. Lubensky.

Greg Lester | University of Pennsylvania
Further information:
http://www.upenn.edu/pennnews/article.php?id=597

More articles from Materials Sciences:

nachricht From foam to bone: Plant cellulose can pave the way for healthy bone implants
19.03.2019 | University of British Columbia

nachricht Additive printing processes for flexible touchscreens: increased materials and cost efficiency
19.03.2019 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>