Etching of deep trenches in silicon explained

Dutch researcher Michiel Blauw has described the physical limitations of the plasma-etching of deep, narrow microstructures in silicon. His results have led to such an improvement in the etching process that trenches with a depth more than 30 times their width can now be made. This is important for the production of sensitive sensors.

Blauw investigated fluorine-based plasma etching processes. A plasma with a high ion-density ’burns’ a small hole in silicon. Many applications require narrow, deep holes. Blauw studied how the plasma reacts with the silicon and how the sidewalls must be treated so as to make the trench as deep and as straight as possible.

The researcher came up with two ways to improve the profile of the trenches in the so-called Bosch process. During this process, a polymer layer ensures that the sidewalls are not etched by the plasma. However, the thin polymer layer is also deposited onto the bottom of the trench and this hinders the etching of deep, narrow trenches.

Firstly the researcher added a third plasma pulse to the Bosch-process after the etching and passivation pulses. This efficiently removed the polymer layer from the bottom of the trench. A patent has been granted for this method. Secondly he optimised the passivation pulse used to treat the sidewalls so that no polymer deposition occurred on the bottom of the trenches.
This made a maximum depth-width ratio of more than 30 possible.

In principle, the etching of silicon occurs at the same speed in all directions. To obtain the deep, narrow trenches necessary for accurate sensors, the sidewalls must be made insensitive to the plasma. This is termed passivating. After a variety of experiments in which he added oxygen to the plasma or deposited a polymer layer, Blauw found an effective passivating technique. A plasma with a high ion-density removes the passivating layer from the surface. This results in deep, narrow trenches because the ions are accelerated perpendicular to the substrate. He also found that the etch rate as a function of the depth-width ratio can be controlled by tuning the ion-density.

Plasma-etching provides considerable advantages for the manufacture of inertial sensors such as accelerometers and gyroscopes. This is because the manufacturing processes for the sensor and the electronics for signal processing are compatible, allowing both parts to be integrated onto a single chip. Furthermore, increasing the depth-width ratio of the etched microstructures considerably improves the integration density and accuracy of these devices.

The research was funded by the Technology Foundation STW.

Media Contact

Sonja Jacobs NWO

More Information:

http://www.nwo.nl

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors