Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New algorithm speeds simulations of complex fluids

26.01.2004


Computer simulations play an essential role in the study of complex fluids – liquids that contain particles of different sizes. Such liquids have numerous applications, which depend on a fundamental understanding of their behavior. But the two main techniques for the atomistic simulation of liquids – the molecular dynamics technique and the Monte Carlo method – have limitations that greatly reduce their effectiveness.



As reported in the Jan. 23 issue of the journal Physical Review Letters, researchers at the University of Illinois at Urbana-Champaign have developed a geometric cluster algorithm that makes possible the fast and accurate simulation of complex fluids.

"The main advantage of the molecular dynamics method – its ability to provide information about dynamical processes – is also its main limitation," said Erik Luijten, a professor of materials science and engineering at Illinois. "Many complex fluids contain particles of widely different sizes, which move at vastly different time scales. A simulation that faithfully captures the motions of the faster as well as the slower particles would be impractically slow."


By contrast, the Monte Carlo method can circumvent the disparity in time scales, since it is designed to extract equilibrium properties without necessarily reproducing the actual physical motion of the atoms or molecules. However, attempts to create appropriate "artificial motion" have been limited to ad hoc solutions for specific situations. Thus, a Monte Carlo method capable of efficiently simulating systems containing particles of different sizes has remained a widely pursued goal.

Luijten and graduate student Jiwen Liu have resolved this issue in a very general way by creating artificial movements of entire clusters of particles. The identification of appropriate clusters is a crucial component of the simulation.

In 1987, researchers at Carnegie Mellon University resolved a similar problem for magnetic materials by simultaneously flipping entire groups (or clusters) of magnetic spins. This finding, which relied on an intricate mathematical mapping dating back to the early 1970s, greatly accelerated calculations for model magnets. Many researchers realized that a similar approach would have an even bigger impact if it could be applied to fluids.

"Thus, a cluster algorithm for the simulation of fluids became a ’Holy Grail’ for scientists studying fluids by means of computer simulations," Luijten said. "However, magnetic materials possess a symmetry that is absent in fluids, making it apparently impossible to use the ideas that were so successful in magnets."

Exploiting an idea developed for mixtures of spheres, Luijten and Liu were able to reconcile the asymmetric nature of fluids with the mathematical foundations underlying the identification of clusters. Their simulation method utilizes a geometric cluster algorithm that identifies "natural" groups of particles on the basis of the elementary forces that act between the particles. This approach greatly accelerates the simulation of complex fluids. Indeed, the greater the disparity in size between particles, the more advantageous their method becomes.

"This algorithm provides us with a new tool to study fluids that were not previously accessible by simulations," Luijten said. "It has the potential to advance our understanding of a great variety of liquid systems."


The U.S. Department of Energy and the National Science Foundation funded the work.

James E. Kloeppel | UIUC
Further information:
http://www.uiuc.edu/
http://www.news.uiuc.edu/news/04/0123luijten.html

More articles from Materials Sciences:

nachricht New materials: Growing polymer pelts
19.11.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Why geckos can stick to walls
19.11.2018 | Jacobs University Bremen gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>