Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-thin coating traps DNA on a leash

05.12.2003


A coating that tethers DNA to a glass surface and allows the molecule to attach in three different places could make DNA microarrays denser and more affordable, according to Penn State material scientists.



DNA is the basis of enormous efforts in research and development in pharmaceutical and chemical industries across the country. To assay large numbers of DNA fragments, researchers use DNA microarrays – sometimes called biochips or genome chips. Currently, manufacture of these chips is time consuming and expensive.

Glass is the common, inexpensive substrate base for optical detection in DNA microarrays. However, the glass surface is slippery and DNA will not stick in place. Penn State researchers have developed a coating made of molecules with one side that binds to glass and the other side that grabs on to DNA strands to solve this problem.


"The coating is a single molecule thick, about one nanometer," says Dr. Carlo G. Pantano, distinguished professor of materials science and director of Penn State’s Materials Research Institute. "The DNA that attaches to this flexible leash is able to act as if it were free floating."

The organic molecules that make up the coating have one end that attaches to the glass and the other end with three functional amine groups where DNA strands can interact and attach. Retention of DNA is more than 50 percent better than found on DNA microarrays using traditional coatings.

Because fluorescent markers are routinely used with DNA microarrays to locate specific DNA fragments that have hybridized, the underlying glass and the coating need to be as non-fluorescent as possible.

Pantano, working with Samuel D. Conzone and Daniel Haines, research scientists at Schott Glass Technologies, and EzzEldin Metwalli, Penn State postdoctoral fellow, chose a variety of glasses, including pure silicon dioxide, Borofloat and flat-panel display glass, to test for self fluorescence of the glass and the coated glass. The researchers found that the coating did not change the self-fluorescence of the slide.

The researchers found that silicon dioxide glass and a Schott product called Borofloat had exceptionally low self-fluorescence. Spin coating of liquid 3-trimethoxysilylpropyl diethylenetriamine, DETA, on the surface or the glass deposited a uniform mono-molecular layer coating on the glass and did not enhance self-fluorescence. The DNA strands were then pin spotted onto the surface and the surface subsequently exposed to ultra violet light or heat so that the DNA would bind to the coating.

Tests showed that the DETA coating was better than aminopropyl triethoxysilane, a standard coating currently in use. The researchers also found that silicon dioxide based microarrays had the best retention of DNA, retaining 22.5 percent of the DNA applied and as much as 17 percent higher than other substrates tested.

"Research on coatings for DNA microarrays is driven by the need to put more spots on each slide so that more potential drugs or genes can be tested at once," says Pantano. "With less self fluorescence, better adhesion of the DNA probes, and more functionality of the tethered DNA, we are moving in the right direction. Perhaps we will find a way to produce re-usable microarrays."

Schott Glass Technologies of Duryea, Pa., who has now licensed the coating, supplied the glass used in development. Penn State has filed for a patent on this work which was supported by Schott Glass and Penn State’s National Science Foundation Materials Research Science and Engineering Center (MRSEC).

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Materials Sciences:

nachricht Scientists develop low-cost energy-efficient materials
24.04.2019 | National University of Science and Technology MISIS

nachricht Modified 'white graphene' for eco-friendly energy
23.04.2019 | Tomsk Polytechnic University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>