Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT team mines for new materials with a computer

18.11.2003


Ultimate goal: a public online database



A computational technique used to predict everything from books that a given customer might like to the function of an unknown protein is now being applied by MIT engineers and colleagues to the search for new materials.

The team’s ultimate goal: a public online database that could aid the design of materials for almost any application, from nanostructure computer components to ultralight, high-strength alloys for airplanes.


The technique, known as data mining, uses statistics and correlations to search for patterns within a large data set. Those patterns can then be used to predict an unknown. "Amazon.com, for example, tracks a customer’s past purchases, then uses data mining to suggest, based on those purchases, additional books the customer might like," said Dane Morgan, a research associate in the Department of Materials Science and Engineering (DMSE).

The technique also has applications in science. Applied to a protein database containing "essentially all the known data on protein structure," Morgan said, data mining "assists researchers in exploring the structure, properties and functions of other proteins."

Now Morgan and colleagues have shown that data mining can also make the search for new materials easier. They describe their work in a recent paper in Physical Review Letters.

Authors are Stefano Curtarolo (Ph.D. 2003); Morgan; Gerbrand Ceder, the R.P. Simmons Professor of Computational Materials Science; Kristin Persson, an MIT postdoctoral associate when the work was conducted; and John Rodgers of Toth Information Systems in Canada. Curtarolo, now an assistant professor at Duke University, wrote his thesis on the work and is continuing to develop it in collaboration with his MIT colleagues.

Throughout history, scientists have created new materials with novel characteristics by experimentation, essentially melting together existing materials, then painstakingly characterizing the structure of the resulting product. "The behavior of any material flows from its structure," Morgan noted.

With state-of-the-art computational techniques, or ab initio methods, engineers can now do "virtual" screenings of potential materials. A computer predicts what structure and properties a given mixture might have, based on fundamental equations of quantum mechanics. Ceder’s Lab for Computational Materials Science specializes in ab initio calculations.

Even these virtual screenings, however, can be time-consuming and costly because "there are still so many possible structures for any given material that it’s impractical for the computer to explore them all," Morgan said.

The new MIT technique "establishes patterns among the many thousands of different possible structures" for a given mixture of materials, he said. "These patterns can then be used to greatly reduce the number of structures the computer has to explore."

To date, the MIT team has tested the technique on a relatively small homegrown database. Recently, however, they received funding from the National Science Foundation to produce a public online database "that will allow the whole computational materials community to contribute calculated data," Morgan said.

The team is excited that the materials database will allow the "recycling" of data from past ab initio computer calculations and laboratory experiments. "Until now, researchers have made no formal use of their older calculations, simply starting again with each new material, thereby throwing away a huge amount of information," Curtarolo said.

"Just as recycling old cans allows one to avoid waste, the ability to recycle old calculated data will avoid wasted and useless calculations in the future. In addition, old calculations for already investigated systems might be used to predict properties of new systems.

"We believe this database and associated data-mining tools will become a standard tool for scientists studying new materials systems," Curtarolo concluded.


The Lab for Computational Materials Science is funded by the Department of Energy and the MIT Center for Materials Science and Engineering through the MRSEC program of the National Science Foundation. In addition, Hewlett-Packard recently donated a million-dollar supercomputer to the lab.

Elizabeth Thomson | EurekAlert!
Further information:
http://web.mit.edu/newsoffice/www/

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>