Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New memory device could offer smaller, simpler way to archive data

13.11.2003


Discovery of new property in commonly used plastic leads to invention



Engineers at Princeton University and Hewlett-Packard have invented a combination of materials that could lead to cheap and super-compact electronic memory devices for archiving digital images or other data.

The invention could result in a single-use memory card that permanently stores data and is faster and easier to use than a compact disk. The device could be very small because it would not involve moving parts such as the laser and motor drive required by CDs.


The researchers, who published a description of the device in the Nov. 13 issue of Nature, achieved the result by discovering a previously unrecognized property of a commonly used conductive polymer plastic coating. Their memory device combines this polymer, which is inexpensive and easy to produce, with very thin-film, silicon-based electronics.

"We are hybridizing," said Princeton professor of electrical engineering Stephen Forrest, who led the research group. "We are making a device that is organic (the plastic polymer) and inorganic (the thin-film silicon) at the same time."

As a result, the device would be like a CD in that writing data onto it makes permanent physical changes in the plastic and can be done only once. But it also would be like a conventional electronic memory chip because it would plug directly into an electronic circuit and would have no moving parts. "The device could probably be made cheaply enough that one-time use would be the best way to go," Forrest said.

The research was done in Forrest’s lab by former postdoctoral researcher Sven Möller, who is now at HP in Corvallis, Ore. Craig Perlov, Warren Jackson and Carl Taussig, scientists at HP Labs in Palo Alto, Calif., are also co-authors of the Nature paper.

Möller made the basic discovery behind the device by experimenting with polymer material called PEDOT, which is clear and conducts electricity. It has been used for years as an antistatic coating on photographic film, and more recently as an electrical contact on video displays that require light to pass through the circuitry. Möller found that PEDOT conducts electricity at low voltages, but permanently loses its conductivity when exposed to higher voltages (and thus higher currents), making it act like a fuse or circuit breaker.

This finding led the researchers to use PEDOT as a way of storing digital information. Digital images and all computerized data are stored as numbers that are written as long strings of ones and zeroes. A PEDOT-based memory device would have a grid of circuits in which all the connections contain a PEDOT fuse. A high voltage could be applied to any of the contact points, blowing that particular fuse and leaving a mix of working and non-working circuits. These open or closed connections would represent zeros and ones and would become permanently encoded in the device. A blown fuse would block current and be read as a zero, while an unblown one would let current pass and act as a one.

This grid of memory circuits could be made so small that, based on the test junctions the researchers made, 1 million bits of information could fit in a square millimeter of paper-thin material. If formed as a block, the device could store more than one gigabyte of information, or about 1,000 high-quality images, in one cubic centimeter, which is about the size of a fingertip.

Developing the invention into a commercially viable product would require additional work on creating a large-scale manufacturing process and ensuring compatibility with existing electronic hardware, a process that might take as little as five years, Forrest said.

Research that combines expertise on both "hard" and "soft" materials, such as the silicon and polymer materials in Forrest’s memory device, represents a major strength at Princeton and is the focus of the newly established Princeton Institute for the Science and Technology of Materials. The institute includes scientists and engineers from a wide range of disciplines and seeks to combine basic science and commercial partnerships.

Funding for Forrest’s research came in part from HP as well as from the National Science Foundation through a long-term grant that funds a Materials Research Science and Engineering Center at Princeton. Princeton University has filed for a patent on the invention. HP has an option to license rights to the technology.

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu/

More articles from Materials Sciences:

nachricht Nanocrystal 'factory' could revolutionize quantum dot manufacturing
18.03.2019 | North Carolina State University

nachricht Design and validation of world-class multilayered thermal emitter using machine learning
15.03.2019 | National Institute for Materials Science, Japan

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>