Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waste fiber can be recycled into valuable products using new technique of electrospinning, Cornell researchers report

11.09.2003


It may soon be possible to produce a low cost, high-value, high-strength fiber from a biodegradable and renewable waste product for air filtration, water filtration and agricultural nanotechnology, report polymer scientists at Cornell University. The achievement is the result of using the recently perfected technique of electrospinning to spin nanofibers from cellulose.

"Cellulose is the most abundant renewable resource polymer on earth. It forms the structure of all plants," says Margaret Frey, an assistant professor of textiles and apparel at Cornell. "Although researchers have predicted that fibers with strength approaching Kevlar could be made from this fiber, no one has yet achieved this. We have developed some new solvents for cellulose, which have allowed us to produce fibers using the technique known as electrospinning."

Frey is collaborating on the research with Yong Joo, an assistant professor, and Choo-won Kim, a graduate student, both in chemical engineering at Cornell. Frey reports on the development Sept. 9 at the annual meeting of the American Chemical Society in New York City.



The technique of electrospinning cellulose on the nanoscale was successfully used for the first time a few months ago. It involves dissolving cellulose in a solvent, squeezing the liquid polymer solution through a tiny pinhole and applying a high voltage to the pinhole. (Nanoscale refers to measurements often at the molecular level; a nanometer is one billionth of a meter, or three times the diameter of a silicon atom.)

"The technique relies on electrical rather than mechanical forces to form fibers. Thus, special properties are required of polymer solutions for electrospinning, including the ability to carry electrical charges," says Frey.

The charge pulls the polymer solution through the air into a tiny fiber, which is collected on an electrical ground, explains Frey. "The fiber produced is less than 100 nanometers in diameter, which is 1,000 times smaller than in conventional spinning," she says. The new technique is now possible because of a new group of solvents that can dissolve cellulose, Frey says. The Cornell researchers currently are using experimental solvents to find one that will produce fibers with superior properties.

Whenever cotton is converted to fabric and garments, fiber (cellulose) is lost to scrap or waste. At present it is largely discarded or used for low-value products, such as cotton balls, yarns and cotton batting.

"Producing a high-performance material from reclaimed cellulose material will increase motivation to recycle these materials at all phases of textile production and remove them from the waste stream," notes Frey. She says that electrospinning typically produces nonwoven mats of nanofibers, which could provide nanoscale pores for industrial filters.

"Producing ultra-small diameter fibers from cellulose could have a wide variety of applications that would exploit the enormous surface area of nonwoven mats of nanofibers and the possibility of controlling the molecular orientation and crystalline structures of nanoscale fibers," says Frey. If successful, possible applications might include air filtration, protective clothing, agricultural nanotechnology and biodegradable nanocomposites.

"Another application we foresee is using the biodegradable electrospun cellulose mats to absorb fertilizers, pesticides and other materials. These materials would then release the materials at a desired time and location, allowing targeted application," says Joo.

While Frey’s group prepared the novel solvents for cellulose, Joo’s group conducted the electrospinning studies.

Frey notes that the United States produces 20 million 480-pound bales of fiber a year; world annual production is 98 million bales. At every step in the process of converting harvested cotton to fabric and garments, some fiber is lost to scrap or waste, Frey says. In opening and cleaning, for example, 4 to 8 percent of the fiber is lost; up to 1 percent is lost during drawing and roving; and up to 20 percent during combing and yarn production.

The research is supported by the New York State College of Human Ecology at Cornell.

Susan S. Lang | Cornell News
Further information:
http://www.news.cornell.edu/releases/Sept03/electrospinning.ACS.ssl.html
http://www.human.cornell.edu/faculty/facultybio.cfm?netid=mfw24&facs=1
http://www.cheme.cornell.edu/peopleevents/faculty/joo/

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>