Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronics sector progresses with breakthroughs in materials science

09.07.2003


Technical Insights Electronics and Semiconductors Industry Impact Research Service: Developments and Opportunities in Advanced Electronic Materials



Materials such as polymers, superconducting ceramics, and diamond films are likely to shape the electronics industry in the coming decade. Processing technologies for these improved materials will also gain importance.

"Advanced materials are synthesized at nano levels, creating the possibility of achieving several new structures and properties, which will enable an endless number of electronic applications," states Technical Insights Analyst Sathyaraj Radhakrishnan.


Nanostructures based on inorganic and organic semiconductors, coupled with complex materials such as polymers will form the building blocks for many future devices and systems.

"Researchers will need capital-intensive, large-scale instrumentation to characterize, synthesize, and process new materials from their smallest constituents and at all scales of assembly," says Radhakrishnan.

Electronics sector advances will depend on the ability to assess life cycle costs, which include materials costs, and overcome stringent management policies and limited investment funding.

Performance optimization, miniaturization, and integration of different classes of materials into multifunctional components are also becoming essential as advanced electronic materials are finding a prominent place in many applications.

Researchers are working on an array of new technologies including elaboration and characterization of very thin dielectrics for gate control, enabling reliance on fewer electron memories, lithographic techniques, and optical interconnects.

Many research frontiers such as synthesis of semi-conducting organic materials, optical conductivity of doped conjugated polymers, holographic data storage, plastic displays, and ferroelectric ceramics are also evolving.

"Multidisciplinary international collaboration is essential to make progress as challenges persist in the form of a choice of substrates, control of dopants, growth techniques to identify native defects, and quantum fluctuations," concludes Radhakrishnan.

New analysis by Technical Insights, a business unit of Frost & Sullivan (www.Technical-Insights.frost.com), Electronics and Semiconductors Industry Impact Research Service: Developments and Opportunities in Advanced Electronic Materials, highlights the remarkable advancements made in this unique and exciting area of research, which will have far-reaching industrial, economic, and societal impact. The analysis also provides valuable information on major market participants, key patents, and various obstacles to commercialization.

Technical Insights will hold a conference call at 1 p.m. (EDT)/ 10 a.m. (PDT) on July 15, 2003 to provide a summary and analysis of the latest developments in advanced electronic materials. Those interested in participating in the call are requested to send e-mail to Julia Paulson at jpaulson@frost.com with the following information for registration:

Full name, Company Name, Title, Contact Tel Number, Contact Fax Number, E-mail. Upon receipt of the above information, a confirmation/pass code for the live briefing will be e-mailed to you.


Frost & Sullivan is a global leader in strategic market consulting and training. Acquired by Frost & Sullivan, Technical Insights is an international technology analysis business that produces a variety of technical news alerts, newsletters, and reports. The ongoing analysis on advanced electronic technologies is covered in Microelectronics Alert, a Technical Insights subscription service. Executive summaries and interviews are available to the press.

Electronics and Semiconductors Industry Impact Research Service: Developments and Opportunities in Advanced Electronic Materials
Report D250

Contact:
USA:
Julia Paulson
P: 210-247-3870
F: 210-348-1003
E: jpaulson@frost.com

APAC:
Pramila Gurtoo
DID: 603-6204-5811
Gen: 603-6204-5800
Fax: 603-6201-7402
E: pgurtoo@frost.com

Julia Paulson | EurekAlert!
Further information:
http://www.ti.frost.com/
http://www.frost.com
http://www.Technical-Insights.frost.com

More articles from Materials Sciences:

nachricht Looking at linkers helps to join the dots
10.07.2020 | King Abdullah University of Science & Technology (KAUST)

nachricht Goodbye Absorbers: High-Precision Laser Welding of Plastics
10.07.2020 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new path for electron optics in solid-state systems

A novel mechanism for electron optics in two-dimensional solid-state systems opens up a route to engineering quantum-optical phenomena in a variety of materials

Electrons can interfere in the same manner as water, acoustical or light waves do. When exploited in solid-state materials, such effects promise novel...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

When Concrete learns to pre-stress itself

15.07.2020 | Architecture and Construction

New lithium battery charges faster, reduces risk of device explosions

15.07.2020 | Power and Electrical Engineering

A new path for electron optics in solid-state systems

15.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>