Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Miniature mix-ups to speed materials research

11.06.2003


A new National Institute of Standards and Technology (NIST) project aims to stir up materials research by adapting "lab-on-a-chip" technology to mix and evaluate experimental concoctions at a rapid clip, hastening improvements in products ranging from paints to shampoos to plastics.



Initially, researchers at the NIST Combinatorial Methods Center (NCMC) and several of the NCMC’s company members plan to rev up the search for new or better emulsions--often-complex formulations that are the basis for U.S. product markets totaling more than $50 billion. They will start by deciphering interactions at the interfaces (inter-facial tension) between the various components that make up these viscous mixtures and are key to their performance.

Now, efforts to improve paints, shampoos and other emulsions tend to be time-consuming, trial-and-error exercises. But with tiny "lab-on-chip" devices, much of the process can be automated, permitting rapid, systematic testing of new material formulations.


The project will extend the capabilities of so-called microfluidic systems--tiny, channel-lined devices now used regularly for medical testing. In DNA chips, for example, droplets of genetic material are routed through networks of tiny wells, each one set up for a particular diagnostic test. Material formulations, however, typically contain components--from solvents to different-sized particles--that do not readily mix and circulate through these minute plumbing systems. To accommodate these differences, NCMC researchers have designed and tested credit-card-sized prototypes tailored for viscous materials research. Features include mixers, pumps, reservoirs and computer control of the flow of sample droplets through a network of millimeter-wide channels. Mixture properties will be characterized with real-time image measurement techniques that NIST is developing with an eye on many application areas.

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Materials Sciences:

nachricht OrganoPor: Bio-Based Boards for A Thermal Insulation Composite System
21.02.2020 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Freiburg researcher investigate the origins of surface texture
17.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>