Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electron nanodiffraction technique offers atomic resolution imaging

30.05.2003


A new imaging technique that uses electron diffraction waves to improve both image resolution and sensitivity to small structures has been developed by scientists at the University of Illinois at Urbana-Champaign. The technique works on the same principle as X-ray diffraction, but can record structure from a single nanostructure or macromolecule.



Determining the structure of materials -- such as protein crystals -- is currently performed using X-ray diffraction. However, many small structures used in nanotechnology have not been accessible to crystallography, so their structures remain unknown.

"Nature is full of objects that cannot be easily crystallized, including many proteins and nano-sized objects that lack a periodic structure," said Jian-Min (Jim) Zuo, a professor of materials science and engineering at Illinois and corresponding author of a paper to appear in the May 30 issue of the journal Science. "Our technique has the potential to image nonperiodic nanostructures, including biological macromolecules, at atomic resolution."


To demonstrate the effectiveness of their imaging technique, Zuo and his colleagues recorded and processed the diffraction pattern from a double-wall carbon nanotube.

"Carbon nanotubes are of special interest because the mechanical and electrical properties of a nanotube depend upon its structure," said Zuo, who also is a researcher at the Frederick Seitz Materials Research Laboratory on the Illinois campus. "However, only the outermost shell of a carbon nanotube has been imaged by scanning tunneling microscopy with atomic resolution."

Because carbon possesses few electrons, the scattering from an electron beam is inherently weak and typically results in an image with low contrast and poor resolution, Zuo said. Imaging carbon atoms has been a special challenge.

"While conventional electron microscopes can achieve a resolution approaching1 angstrom for many materials," Zuo said, "the resolution limit for carbon in nanotubes is only 3 angstroms."

To image a double-wall carbon nanotube, the researchers first selected a single nanotube target in a transmission electron microscope. Then they illuminated the nanotube with a narrow beam of electrons about 50 nanometers in diameter. After recording the diffraction pattern, they used an oversampling technique and iterative process to retrieve phase information and construct an image with a resolution of 1 angstrom.

"Since this process does not use a lens to form the image, the resolution is not limited by lens aberration," Zuo said. "Lens aberration is the factor that has been limiting the resolution of the best electron microscopes. It’s like the blur when you look through the bottom of a wine bottle."

The complexity of the nanotube image was surprising, Zuo said. "The double-wall nanotube consists of two concentric nanotubes of different helical angles. Like two screws with different pitch, sometimes the nanotube structures line up and sometimes they don’t. This results in a complicated pattern of both accidental coincidences and mismatches."

The ability to generate images from nanoscale diffraction patterns offers a way to determine the structure of nonperiodic objects, from inorganic nanostructures to biological macromolecules, much like X-ray diffraction does for crystals, Zuo said. "Since diffraction is a standard method for determining structure, our nanoarea electron diffraction technique opens a door to examining the structure of individual and highly irregular molecules and nanostructures like clusters and wires."


###
In addition to Zuo, the team included visiting scientist Ivan Vartanyants and postdoctoral researcher Min Gao at Illinois, and researchers Ruth Zhang and Larry Nagahara at Motorola Labs. The U.S. Department of Energy funded the work.


James E. Kloeppel | UIUC
Further information:
http://www.uiuc.edu/
http://www.mse.uiuc.edu/
http://www.news.uiuc.edu/scitips/03/0529nanodiff.html

More articles from Materials Sciences:

nachricht Materials scientist creates fabric alternative to batteries for wearable devices
12.11.2018 | University of Massachusetts at Amherst

nachricht A new path through the looking-glass
12.11.2018 | Deutsches Elektronen-Synchrotron DESY

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>