Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warped idea: Ways to stop swayed wood may be around the bend

15.04.2003


Dr. Zhiyong Cai, Texas Agricultural Experiment Station forest products researcher, is developing a software program that will help manufacturers make wood products that will not warp. (Texas Agricultural Experiment Station photo by Kathleen Phillips)


Anyone who buys a swayed plank of wood has to be, well, warped.

But a Texas forestry sciences researcher may have a straight-forward computer model just around the bend, saving millions for wood manufacturers and consumers.
t
"Wood is an old material that has been used in construction for thousands of years," said Dr. Zhiyong Cai, Texas Agricultural Experiment Station forest products researcher. "Every place in the world uses wood products, but there still are things we don’t understand such as variability and moisture-related problems such as decay and warping."



Cai’s study examines a new technique to understand why and how wood for walls, furniture and cabinets warps when moisture gradient is present.

"We have to understand warping in order to solve it and prevent it," Cai said. "My study aims at giving wood manufacturers good tools with which to make the right decisions in manufacturing."

According to the Composite Panel Association, warping is a leading technical problem for the industry.

"Severe warping of finished products has the potential to damage a manufacturer’s reputation and significantly increase the cost of making the product," said Cai, noting that often the wood product leaves a factory looking straight only to warp later.

Warping has been studied for a long time, Cai said, but the existing warping control model for manufacturing composite wood has been one-dimensional and has not been updated in almost 40 years.

"Wood composite panels are two-dimensional and can be regarded as a multi-layered product in which each layer has different behaviors, especially when they experience moisture gradients through their thickness," Cai said.

His study developed a two-dimensional warping model based on the mechanics of layered composites. Using commercial spreadsheet software and a complicated math formula, wood panels are modeled as having 10 layers with different orientations and properties.

"Once the model has been given input parameters, it will calculate and plot the overall linear expansion and out-of-plane warping of the wood-based panel," Cai said. That would enable a factory manager to make changes in the manufacturing process to avoid warping of the finished product, he noted.

Cai said the next phase of his research will be to use the computer model in an actual manufacturing setting to see if the model in theory works in practice.

Writer: Kathleen Phillips, (979) 845-2872,ka-phillips@tamu.edu
Contact: Dr. Zhiyong Cai, (979) 458-1417, z-cai@silva.tamu.edu

Kathleen Phillips | Texas A&M University
Further information:
http://agnews.tamu.edu/dailynews/stories/FRSC/Apr1403a.htm

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>